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study. The major difference is that, in the original study, a neural
network was trained with the visual input experienced along an entire
route whereas here we trained the network using only the visual input
experienced during the portions of learning walks where ants turn
and fixate the goal (Fig.1B, Fig.2B). These points are clearly
identified in the original papers of Judd and Collett (Judd and Collett,
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nestward routes (Fig.2A, dark segments). We replicated these
portions of the routes and used the views experienced along these
segments to train the network (Fig.2B). After training, a single
simulated ant was released 30cm from the feeder, corresponding
to the commencement of tracking in the original study. The path
was terminated when the simulated ant reached 0.25cm from the
goal. The path followed by the simulated ant and the retinal position
of the cone’s edges were recorded.

RESULTS AND DISCUSSION
No need for discrete snapshot memories

The aim of our modelling was to query the pervasive view that ants
store and retrieve discrete views of the world independently. We
first asked whether a model based on a single holistic memory could
reproduce the observations of homing ants searching for their nest
in triangular arrays of landmarks (Fig.1C–E). The network that
instantiates the holistic memory was trained with a set of views
selected to mimic the nest-focused views generated by the learning
walks of desert ants (Fig.1B). The model accurately reproduces the
search distributions across all three conditions (Fig.1F–H). That is,
simulated ants search at the fictive nest position when the visual
panorama viewed from the fictive nest matches that of the training
situation, and the search pattern loses its accuracy when the
landmarks are moved to twice the distance without changing their
size. Crucially, this is achieved without the agent storing a view
from the nest position itself. That is, the stored views are not acting
as point attractors to discrete locations in space.

Having shown that a single memory network can take information
from multiple views experienced in training and produce goal
searches that match those observed with ants, we then attempted to
replicate the results that provide the strongest support for the
independent retrieval and matching of multiple discrete views. Judd
and Collett (Judd and Collett, 1998) observed that an ant approaching
a single black cone (Fig.2C) will hold the edges of the cone at several
discrete positions on its retina, as if matching discrete retrieved views
in turn (Fig.2E). We show here that this pattern of behaviour can
arise from the use of a single memory network (Fig.2F) supplied
with training paths taken directly from the original Judd and Collett
paper (Fig.2A).

Connecting input to output
The explanation of how a holistic memory can reproduce patterns
of behaviour suggestive of the retrieval and use of discrete views
is quite clear. The use of a single network to learn views and drive
subsequent navigation makes an explicit connection between the
paths taken during learning and subsequent behaviour. Thus the
distinct preferred retinal positions of edges during approaches to
the cone is a consequence of the discrete nature of the views used
for training and not a result of the system forming, storing and
retrieving discrete memories. In other words, we show that the
discrete nature of the output behaviour reflects the discrete nature
of the input (or training) data. The philosophy of ‘embodied
cognition’ explains how an intelligent interaction between the
physical agent and its environment can simplify the neural
processing required. Here, some of the processing has been
outsourced to the active sensing behaviour of the learning walks,
allowing navigation without the cognitive machinery required to
store, retrieve and use discrete views.

In summary, our data demonstrate that retrieval-type memory of
the views from discrete places in the world is not a prerequisite for
visual navigation to those places. Instead, a single holistic memory
structure can store sufficient visual information to allow navigation

from a range of locations by simply following the most familiar
direction. By avoiding the problem of retrieving appropriate
memories, the familiarity-based approach is a parsimonious method
that enables both the pinpointing of a specific location and the
following of long routes through complex environments.
Furthermore, the model provides accurate replications of behavioural
data reported in key research papers.

When might additional mechanisms be required?
The use of familiarity as a criterion for choosing a direction is an
attractive and viable scheme for navigating ants because of the
constraints of the task (i.e. moving between physical goals) and their
motor systems (i.e. coupled viewing and walking direction). However
in its current form, this model cannot explain all view-based
behaviours in insects. For instance, hoverflies (Collett and Land, 1975)
and waterstriders (Junger, 1991) use views to maintain a fixed position
in a fluid space, so there may be a requirement for a view-based
mechanism that acts as an attractor. Conceivably this could be
implemented using an absolute familiarity threshold as a stop signal,
or by the use of a snapshot in the traditional sense (Cartwright and
Collett, 1983). Similarly, our current model does not capture all that
we know about the sensorimotor implementation of visual navigation
in ants. For instance, Lent et al. (Lent et al., 2009) show how ants
can perform some form of mental image rotation to generate corrective
saccades during visual orientation whereas our model relies on an
exhaustive rotational search. The inclusion of a saccadic mechanism
like this would improve the efficiency of the model but would not
alter the pattern of results presented.

Another issue not currently addressed in our modelling concerns
how ants modulate learning. During learning walks, the views used
to guide a return to a nest are learnt at the beginning of the outward
journey, and reciprocally, views used to pinpoint the food source
are learnt at the beginning of the return journey. However, we know
that ants form distinct memories for foodward and nestward
navigation, and that those memories are insulated from each other
(Wehner et al., 2006). It may be possible that ants learn continuously
but switch between foodward and nestward motivational contexts
to decide to which memory the current visual information is
allocated. Switching motivational context would also lead the ant
to turn and face the appropriate goal, by means of path integration.

Conclusions
This work has been driven by the philosophy of trying to produce
parsimonious hypotheses for observed behaviours. In this spirit, we
proposed a simple solution that can explain key observations of
visual navigation in ants from both experimental and natural
conditions. Our belief is that ant experiments and insect-inspired
modelling can be used to generate valuable hypothetical mechanisms
for understanding animal navigation in general (Wystrach and
Graham, 2012). Given that the idiosyncratic routes that are
characteristic of ant navigation are also seen in many vertebrate
navigators as they move through familiar terrain, one should ask
whether the ideas presented here may apply to vertebrates. Certain
lines of evidence suggest that this is not an entirely fanciful notion.
Route following in humans does not have to engage the map-like
memory formed in the hippocampus (Hartley et al., 2003), and
familiarity-type memories are also independent of the hippocampus
(Fortin et al., 2004). This makes the familiarity-based solution
proposed here an interesting candidate to explain route following
in vertebrates. The next step is to design experiments that
conclusively test whether animals use such a familiarity-based
memory for navigation.
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