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Abstract: In the era of sustainability, f irms grapple with the decision of how much to invest in 
green innovation and how it influences their economic trajectory. This study employs the 
Crepon, Duguet, and Mairesse (CDM) framework to examine the conversion of R&D funds 
into patents and their impact on productivity, effectively addressing endogeneity by utilizing 
predicted dependent variables at each stage to exclude unobservable factors. Extending the 
classical CDM model, this study contrasts green and non-green innovations' economic 
effects. The results show non-green patents predominantly drive productivity gains, while 
green patents have a limited impact in non-heavy polluting firms. However, in high-pollution 
and manufacturing sectors, both innovation types equally enhance productivity. Using 
unconditional quantile regression, I found green innovation's productivity impact follows an 
inverse U-- out effects, Productivity, CDM framework, Quantile 

regression, Recentered influence function 
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 3 

The first R&D equation of the model leverages a Heckman selection model to rectify 

potential self-selection biases arising from the R&D investments information disclosure, 

�D�O�O�R�Z�L�Q�J���I�R�U���W�K�H���S�U�H�G�L�F�W�L�R�Q���R�I���5�	�'���L�Q�W�H�Q�V�L�W�\���I�U�R�P���D���I�L�U�P�¶�V��R&D investment and a set of 

extrogenous variables. The second patent equation involves the utilization of count data models, 

specifically designed to handle the discrete nature of patent outputs, to estimate patent intensity 

from the sanitized prediction of lagged R&D intensity, thus overcoming issues of simultaneity 

and omitted variable bias. The final productivity equation deftly combines the predicted patent 

intensity with firm productivity, providing a refined estimation of the influence of innovation 

outputs on productivity levels, while meticulously controlling for the endogeneity that often 

plagues concurrent assessments of innovation and productivity. 

This three-tiered econometric approach is uniquely suited for the current study due to its 

capability to provide a nuanced understanding of the innovation-productivity paradigm, 

particularly within the context of Chinese listed firms, where the traditional methodologies fall 

short in capturing the complex dynamics at play. By integrating the extended CDM framework 

that disentangle the influences of green and non-green innovations, this study stands on solid 

methodological ground, paving the way for robust and reliable inferences about the economic 

opportunity costs of green innovation. 

This study also extend the classic CDM model to explore the complex dynamics affecting 

firm-level R&D input and outcomes, emphasizing the profound influence of environmental 

regulations, market conditions, and ownership structures. It pioneers the use of provincial 

pollution charges and industrial pollution treatment investment as nuanced proxies to dissect the 

impact of environmental policies on R&D intensity. The findings suggest a negative correlation, 
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indicative of a crowding-out effect where environmental protection costs could deter broader 

innovation resources. 

In addressing the critical evaluation of R&D outcomes, this study scrutinizes the 

limitations of the patent equation in conventional CDM model, which estimates firm-level patent 

intensity as a function of R&D intensity and observable controls. A notable deficiency of this 

approach is its oversight of unobserved, time-invariant factors influential in the patenting 

process. To rectify this, the current analysis presents two novel methodological enhancements 

aimed at refining the prediction accuracy of patent intensity. 

First, the study innovatively calibrates the predicted patent counts by incorporating a firm's 

average patenting activity observed from 2010 to 2018, thus encapsulating the impact of �I�L�U�P�¶�V��

consistent, unobserved patenting preference. This refinement of patent equation prediction 

preserves the exogeneity of the productivity equation by ensuring the time-invariant factors, 

captured within a firm's average patent history, remain uncorrelated with the temporal variability 

of the error term in the productivity estimation. 

Second, to rectify the zero-value issue in patent intensity calculations, the method 

introduces a nominal constant (0.001) to all predicted patent counts, ensuring valid logarithmic 

transformations for zero values. Normally, patent intensity is calculated by dividing patent 

counts by employee numbers. However, for artificially adjusted zero values, this division is 

omitted to avoid introducing non-existent v
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2. L ITERATURE REVIEW  
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in developing economies being especially susceptible to such constraints (Edeh and Acedo, 

2021). 

Scholars have approached the notion of crowding-out effects from varied perspectives, 

focusing on both the quantitative (input/output) and economic returns of GI (Popp and Newell, 

2009; Marin, 2014; Marin and Lotti, 2017). Popp and Newell (2009) propose that a rise in 

environmental patents at the expense of other types of innovation may signal a crowding-out 

effect. They scrutinize this phenomenon from three angles: inter-sectoral dynamics, intra-sectoral 

allocation, and the comparative social value of different R&D investments. Marin (2014), on the 

other hand, measures crowding-out in terms of economic returns, suggesting that investments in 

GI that yields fewer patents or smaller productivity gains than other innovations indicates an 

inefficiency and a potential crowding-out effect. 

�7�K�H���H�P�S�L�U�L�F�D�O���H�Y�L�G�H�Q�F�H���R�Q���*�,�¶�V��crowding-out effects on other forms of innovation is 

mixed, with studies showing varied outcomes based on the subjects and contexts investigated. 

Popp and Newell (2009) find crowding-out effects of energy innovations on other innovations 

within industries but no evidence of cross-industry crowding-out effects. Marin (2014) reports a 

slight negative impact of GI on overall manufacturing productivity and points out that green 

patents are less beneficial than other patents. Moreover, the study highlights a lower efficiency in 

converting R&D investments into GI as compared to no ] TJ
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instance�² divert resources away from R&D. Yuan and Zhang (2017) observed that 

environmental regulations could have a short-term negative impact on industrial R&D 

investment intensity but may promote R&D in the longer term. 

Previous applications of the CDM model have primarily examined the interplay between 

innovation and productivity in contexts such as Italian manufacturing sectors (Marin, 2014; 

Marin and Lotti, 2017) and SMEs in Sub-Saharan Africa (Edeh and Acedo, 2021), with further 

industry-focused studies in China (Yuan and Zhang, 2017; Yuan and Xiang, 2018). However, 

these studies have not delved into firm-level analysis within China, leaving a significant gap in 

understanding the specific impacts of environmental innovation at this granular level. This study 

addresses this gap by adapting the CDM model to scrutinize the nuanced effects of GI on firm 

productivity in China, thereby contributing a novel perspective to the existing body of research.  

This paper is structured to first estimate the relationship between innovation activities and 

productivity using the CDM model, then explore the crowding-out effects of GI using an 

extended CDM model, and finally, apply an unconditional quantile regression (UQR) to assess 

the non-linear impacts of patents on firm productivity. Robustness tests that include Regression-

based Inference Function (RIF) and conditional quantile regression (CQR) will further scrutinize 

the relationship between GI and productivity. 

 

3. M ETHODOLOGY AND DATA  

The CDM model, established by Crépon et al. (1998), offers a structural framework to 

dissect firms' innovation processes, examining how R&D investments yield patents and, 

ultimately, enhance productivity (Hall and Mairesse, 2009). This three-stage model em
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circumvent endogeneity, simultaneity and reverse causality, thus clarifying the causal links 

between R&D, innovation outputs, and productivity. Marin et al. (2014) expanded this model, 

distinguishing between environmental and other forms of innovation to infer crowding-out 

effects. Applying the classic and extended CDM models, this study analyzes the full sample of 

�&�K�L�Q�D�¶�V���O�L�V�W�H�G���I�L�U�P�V���D�Q�G��six sub-samples, differentiating high-pollution from non-pollution firms 

and contrasting high-tech with low-tech, and manufacturing with non-manufacturing sectors. 

 

3.1 R&D equation 

In addressing R&D investment decision biases, this study employs a modified Heckman 

model. In the CDM framework, the Heckman model originally addresses self-selection bias in 

R&D investment decisions. This study modifies the model to focus on the self-selection bias in 

the disclosure of R&D expenditure among Chinese listed firms, all of which engage in R&D 

activities1. Approximately 32.9% of firm-year observations between 2010 and 2018 lack R&D 

expenditure data disclosure�����O�L�N�H�O�\���L�Q�I�O�X�H�Q�F�H�G���E�\���I�L�U�P�V�¶���U�H�S�X�W�D�W�L�R�Q���F�R�Q�F�H�U�Q�V���R�U���L�Q�Y�H�V�W�R�U��

confidence. The modified approach uses a probit model for the Inverse Mill's Ratio (IMR) in its 

first step, estimating the probability of R&D expenditure disclosure based on various controls 

and exclusion criteria. �7�K�H���,�0�5���W�K�H�Q���F�R�U�U�H�F�W�V���I�R�U���E�L�D�V���L�Q���W�K�H���V�H�F�R�Q�G���V�W�H�S�¶�V���5�	�'���L�Q�W�H�Q�V�L�W�\��

assessment. This approach, previously adopted in studies like Edeh and Acedo (2021) and Wang 

et al. (2021), effectively handles the non-disclosure biases in R&D expenditure. Details of the 

equations for the IMR calculation and bias correction are provided. 

 

 
1 Being large entities, all Chinese listed firms included in this study engage in R&D activities. The absence of R&D expenditure 
data in certain cases is attributed to non-disclosure rather than a lack of R&D activity, as evidenced by their fully-disclosed and 
positive patent data. 
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R&D intensity. R&D intensity (�4�&�+�0�6) is then predicted as logged R&D expenditure per 

thousand employees, using the Heckman model's estimation. 

 

�4�&�+�0�6�Ü�á�ç 
L �Ù�4�H�J�2�2�%�Ü�á�ç�?�5 
E�Ù�5�.�'�8�Ü�á�ç
E�Ù�6�H�J�'�/�2�Ü�á�ç
E�Ù�7�H�J�%�#�2�+�0�6�Ü�á�ç
E�Ù�8�H�J�2�%�+�0�6�Ü�á�ç
E

�Ù�9�%�4�v�Ü�á�ç
E�Ù�: �5�1�'�Ü
E�ß�&�Ü�á�ç
E�é�+�/�4�Ü�á�ç
E�ñ�ç
E�Ü�ç
E�Ý�Ü�á�ç        (4) 

 

The environmental policy indicators use the logarithm of lagged provincial pollutant 

charge (�H�J�2�2�%�Ü�á�ç�?�5), a fee levied on businesses for pollutant emissions, including sewage, waste 

gas, and hazardous waste2 (Guo et al, 2019). A higher �2�2�% indicates greater environmental costs 

for firms, thereby serving as a valid indicator for measuring the crowding-out effects of 

environmental policy on a firm's R&D investments. 

To enhance robustness, the analysis incorporates a two-year lagged PPC (�H�J�2�2�%�Ü�á�ç�?�6�; as an 

alternative proxy, inspired by Yuan and Zhang (2017) who found that a one-year lag in 

environmental regulations reduced R&D spending, while a two-year lag enhanced it. 

Additionally, the one-year lagged provincial investments in industrial pollution treatment 

(�H�J�+�2�6�Ü�á�ç�?�5) is used, which capture the total expenses incurred by industrial firms for pollution 

treatment at the provincial level. These expenses are funded by pollution charges, government 

subsidies, and enterprise self-financing. This measure not only reflects the financial burden of 

environmental protection on firms but also indicates the intensity of local environmental policy 

implementation. 

 

 
2 Under China's 2003 "Measures for the Administration of Pollutant Discharge fees," industrial and commercial entities emitting 
pollutants are charged a fee, which doubles if emissions exceed national standards. Consequently, a uniform pollution levy rate 
applies nationwide, meaning a higher provincial pollutant charge indicates greater total emissions within that province. 
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impact of predicted patent intensity at different points of the productivity distribution without 

relying on specific conditional assumtions that are required by Conditional Quantile Regression 

(CQR), preferable when conditional relationships are uncertain and complex.  


± �+�(���<�U�á�R�:�(�Ò�;�����=���@�(�Ò
L �r���������������������������������������������:�z�; 
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UQR analyzes how changes in explanatory variables, X, affect the unconditional 

distribution of the response variable, Y (Rios-Avila, 2020). It is based on the idea of recentered 

influence functions (RIF) for robust estimation against outliers and understanding the 

distribution structure. Influence functions (IF) utilizes Gateaux directional derivatives to estimate 

partial effects, revealing how small changes in distribution affect mean values. RIF assess the 

impact of individual observations on the mean, with IFs having an expected value of 0 (Equax8iRJ
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IF is the influence of an individual observation i on the �ì�ç�Û quantile (�M��) of unconditional 

distribution of �;�Ü�����I�L�U�P�V�¶���S�U�R�G�X�F�W�L�Y�L�W�\���L�Q���W�K�L�V���F�D�V�H�������(�Ò is the cumulative distribution function of 

�;�Ü. 	t�<�;�Ü
Q�M���= �W�D�N�H�V�������L�I���D���I�L�U�P�¶�V���S�U�R�G�X�F�W�L�Y�L�W�\���E�H�O�R�Z���R�U���H�T�X�D�O���W�R���ì�ç�Û���M�Q�=�J�P�E�H�A�ä���B�ì �:�M���; is the 

marginal density of �;�Ü at quantile �ì  that is estimated based on kernal density distribution. To 

sum up, RIF equals to original distributional statistic at quantile �M���� plus the marginal effects of 

�;�Ü made on the quantile �ì of the distribution.  

 

�Ú��
â 
L �:�Ã �: �Ü�®���: �Ü
�ñ�;�?�5�Ã �: �Ü

�Ç
�Ü�@�5 �4�+�(
â �:�;�Ü�á�M��
Ý�á�(�Ò�;

�Ç
�Ü�@�5         (13) 

 

The coefficient matrix is estimated as the Equation 13, in which it computes sample 

quantile of marginal distribution and acquire density estimate by kernel density to obtain RIF. 

The coefficient represents the marginal effect estimates of an infinitesimal location shift in the 

distribution of covariates X on���ì�ç�Û���M�Q�=�J�P�E�H�A �R�I���X�Q�F�R�Q�G�L�W�L�R�Q�D�O���G�L�V�W�U�L�E�X�W�L�R�Q���R�I���I�L�U�P�V�¶���S�U�R�G�X�F�W�L�Y�L�W�\����

ceteris paribus. The study employs individual-time fixed effects RIF regression to examine the 

heterogeneity in the effects of green and non-green innovations across productivity distribution 

in the Extended CDM model3. 

 

3.3.2 Robustness checks for non-linear relationship estimations 

3.3.2.1 RIF regression with treatment effects  

To check the robustness of non-linear relationship estimates in the productivity equation, a 

dummy variable for green patent ownership is used as a treatment variable in RIF regressions 

 
3 rifhdreg with abs(id year) command allows controlling for high-dimensional fixed effects, which is equivalent to rifhdfe fixed 
effects settings and estimate within-firm effects when controlling individual-
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with generalized influence treatment effect, identifying effects of GI investments. However, 

standard RIF is limited to local approximations, especially for categorical variables. To meet the 

confoundedness assumption, it requires to 
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3.3.2.2 Conditional quantile regression for panel data  

Conditional Quantile Regression (CQR), while common in quantile analysis, has 

limitations due to its reliance on numerous specific covariates, potentially reducing reliability 

across different quantiles (Bui and Imai, 2018). However, in our research, CQR is effective in 

CDM frameworks, using patent predictions derived from earlier stages based on limited 

covariates, then applied in the productivity equation to mitigate 
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4. RESULTS AND DISCUSSION  

4.1 R&D equation  

Table 1 R&D equation  

 �D�}�����o���í �D�}�����o���î �D�}�����o���ï �D�}�����o���ð �D�}�����o���ñ �D�}�����o���ò �D�}�����o���ó �D�}�����o���ô �D�}�����o���õ �D�}�����o���í�ì �D�}�����o���í�í �D�}�����o���í�î �D�}�����o���í�ï �D�}�����o���í�ð 
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In evaluating the R&D equation, the Heckman selection model, compared with basic OLS, 

showed no significant multicollinearity (mean VIF = 1.84, see Table B1). The Heckman model's 

significant lambda (IMR variable) across all samples indicates sample selection bias, effectively 

addressed by this model (part 3 in Table 1). The first Heckman step revealed environmental 

performance disclosure (EPD) positively correlated with R&D expenditure disclosure in the full 

and certain sub-samples, while longer stock market presence (AGE) and larger assets (lnASSET) 

correlated negatively across all samples, validating their roles as effective exclusion restrictions 

(part 2 in Table 1).  

In the second Heckman step (part 2 in Table 1), environmental regulations (PPF) 

negatively impacted R&D intensity in all samples but low-tech industries7, indicating a 

crowding-out effect. In the full sample, a 1% rise in pollution charges correlates with a 0.08% 

decrease in R&D spending, where a provincial increase of 7.7 million in charges typically 

reduces a firm's R&D investment by 0.4 million RMB. Moreover, non-polluting, high-tech, and 

non-manufacturing firms showed greater sensitivity (higher elasticity) to environmental costs 

compared to their counterparts. 

Other negative influences on R&D investment included financial risk (LEV), employee 

costs (EMP), production costs (PCINT) and market concentration (CR4). State-owned 

enterprises (SOE), despite governmental support, were less efficient in technological innovation. 

Capital intensity (CAPINT) shows a positive relationship with R&D intensity across most 

samples, except in high-pollution and manufacturing firms. Bartoloni (2013) highlights the 

crucial impact of capital structure on R&D investment. In capital-intensive sectors 

 
7 Low-tech firms, with typically smaller R&D budgets, display negligible changes in R&D investment in response to the 
environmental policies.  
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(e.g.manufacturing), firms often resort to financing and increasing debt for expansion, leading to 

a reduced focus on innovation as their total capital, including debt, grows. 

 

4.1.1 Sensitivity analysis with alternative environmental regulation proxies 

In assessing the impact of environmental policies on R&D investments, this study applies 

two alternative proxies: a two-year lagged provincial pollutant charge (PPC) and a one-year 

lagged industrial pollution control investment (IPT). The results consistently indicate a 

significant crowding-out effects of environmental costs on R&D investments in most samples, 

both in the short and long term, contrasting Yuan and Zhang's (2017) findings of a positive long-

term impact.  

Table 2 R&D equation with alternative environmental regulation proxies 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14  
lnPPC(-2) nIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) 

  Full sample High-pollution Non-pollution High-tech Low-tech 
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alternative models than non-heavy polluting firms (M3-M6 in Table 2). This disparity is partly 

due to cost transference within supply chains, with high-polluting firms passing additional 

environmental expenses onto other businesses. Moreover, the prevailing trend towards 

environmental responsibility and evolving consumer expectations encourages many low-

polluting companies to voluntarily augment their environmental investments, thus diverting 

resources from R&D activities 
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higher efficiency in converting R&D into patents than the non-polluting firms. This trend is also 

evident among manufacturing and low-tech firms and their counterparts. However, the influence 

of regional technology levels (PTL) 
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4.3 Productivity equation  

The study employs the Mundlak test over the Hausman test for the productivity equation 

due to its reliability under issues including heteroskedasticity or serial correlation in error terms 

(Mundlak, 1978). The Mundlak test, incorporating panel-level means in the random effects 

model, significantly rejects the null hypothesis at a 99.9% confidence level (Table B7) 8. This 

suggests a correlation between unobservable factors in the error term and control variables, 

indicating the suitability of a panel fixed effects model. The CDM and extended CDM models 

use individual and time dual fixed effects, with bootstrapping standard errors to address these 

unobservable factors. 

To address the discrepancy between predicted and actual patent counts, and mitigate 

endogeneity arising from omitted variables like patenting preferences, the model modifies the 

predicted patent counts9. This is achieved by scaling them with each firm's actual average patent 

number. This adjustment method effectively neutralizes potential biases from unobserved time-

invariant factors associated with patenting, while not affecting the variability in firms' 

productivity, thereby enhancing the accuracy of the productivity equation estimates10.  

Productivity equation models reveal that predicted patent intensity significantly boosts 

productivity, with a 1% increase in patent intensity leading to a 0.42% increase in productivity in 

the full sample (Model 43 in Table 5). Capital intensity also positively impacts productivity, 

while firm size shows negligible effects. 

Table 5 Results of productivity equation- CDM  

 
8 Table A8 also shows Mundlak test results for Extended CDM model. The results also indicate random effects model is biased 
and fixed effects model should be used.  
9 The exponential transformed green patent and non-green patent applications compared the realized patent value are presneted in  
Table B5 and Table B6, respectively  
10 In Marin (2014), the absence of adjustments for potential discrepancies between predicted and actual patent counts may have 
contributed to their significantly different findings, particularly regarding the crowding-out effects in high-polluting firms.  
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Model 43 Model 44 Model 45 Model 46 Model 47 Model 48 Model 49 

  
Full-sample High-pollution Non-pollution High-tech Low-tech Manufacturing 

Non-
manufacturing 

Vr  0.419***  0.469***  0.338***  0.387***  0.423***  0.391***  0.502***  
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comparably beneficial to high-polluting firms�¶���S�U�R�G�X�F�W�L�Y�L�W�\�����0�R�G�H�O���������L�Q��Table 6). The higher 

efficiency in R&D input-output conversion for GI (refer to Model 31-32 in Table 4), coupled 

with their productivity effects comparable to those of non-green innovations, indicates an 

absence of significant crowding-out effects of GI in these firms. This suggests that high-polluting 

firms can effectively balance the environmental protection costs with gains from green 

innovations. 

 

4.3.1 Non-linear relationship estimations on productivity equation  

4.3.1.1 Unconditional quantile regression  

The study explores non-linear effects of innovations on productivity using unconditional 

quantile regression (UQR) in both CDM and Extended CDM models. In full -sample, the U-

�V�K�D�S�H�G���U�H�O�D�W�L�R�Q�V�K�L�S���E�H�W�Z�H�H�Q���I�L�U�P�V�¶���S�D�W�H�Q�W���L�Q�W�H�Q�V�L�W�\�����3�$�7�,�1�7�����D�Q�G���S�U�R�G�X�F�W�L�Y�L�W�\���O�H�Y�H�O���L�V���H�Y�L�G�H�Q�W����

particularly for non-green patents (NECOINT). Green innovations (ECOINT), however, do not 

significantly impact productivity (see Error! Not a valid bookmark self -reference. and  

Table 8). 

Figure 1 Non-linear estimations based on UQR, comparing CDM and Extended CDM models in 
full sample 
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Table 7 Results of UQR on CDM models (Full sample) 

Full sample Model 57 Model 58 Model 59 Model 60 Model 61 Model 62 Model 63 Model 64 Model 65 
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Contrary to the non-pollution sample where negative coefficients of GI suggest crowding-

out effects (Table 10), UQR in the high-pollution sample reveals a notably robust impact of GI 

on productivity, surpassing non-green innovations within the 40th to 80th productivity quantiles 

(Table 9). This finding underscores the absence of crowding-out effects and highlights the 

beneficial role of GI in enhancing the performance of median-high productive, high-polluting 

firms. However, at the 90th productivity quantile, GI's productivity returns diminish, showing 

lower benefits compared to non-green innovations, indicating crowding-out effects. 

In addition to innovations, the impact of different resources on productivity varies across 

industrial types and productivity levels. Both CDM and extended CDM models show that capital 

intensity generally boosts productivity more in high-polluting firms (Table C1-Table C2 and 

Table 9-Table 10). In contrast, non-polluting firms rely more on capital at high productivity 

(



 30 

Figure 5 Non-linear estimations based on UQR of Extended CDM model, high-tech v.s. low-tech 
sample 

 

Table 11 Results of UQR on Extended CDM models (High-tech sample) 

High-tech Model 129
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Differences in crowding-out effects of GI between high-pollution and non-pollution samples 
aren't mirrored in high-tech vs. low-tech firms (Figure 5). In the extended CDM model, both firm 
types show similar patterns in non-green and green innovation's impact on productivity, and 
neither benefits significantly from GI ( 

Table 11and  

Table 12). This similarity suggests pollution intensity, not technological level, primarily drives 

GI's economic returns, making high-tech and low-tech firms suitable for a placebo test to 

confirm pollution's influence on GI activities. 

Table 12 Results of UQR on Extended CDM models (Low-tech sample) 

Low-tech Model 138 Model 139 Model 140 Model 141 Model 142 Model 143 Model 144 Model 145 Model 146 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

Vr 

 

0.397***  0.402***  0.328***  0.264***  0.274***  0.298***  0.396***  0.471***  0.604***  
lnNECOINT (5.041) (7.062) (6.443) (5.677) (5.854) (6.074) (6.908) (6.689) (5.483) 

Vr 

 

-0.049 -0.075 -0.022 0.024 0.052 0.032 -0.026 -0.066 -0.074 
lnECOINT (-0.710) (-1.462) (-0.480) (0.566) (1.233) (0.742) (-0.513) (-1.067) (-0.782) 

lnCAPINT 
0.106***  0.126***  0.126***  0.118***  0.103***  0.100***  0.130***  0.126***  0.183***  
(3.993) (5.997) (6.531) (6.512) (5.800) (5.266) (5.695) (4.627) (4.696) 

lnEMP 
-0.051 -0.005 -0.007 -0.011 -0.022 -0.056* -0.054+ -0.044 -0.058 

(-1.237) (-0.181) (-0.260) (-0.453) (-0.939) (-2.329) (-1.895) (-1.367) (-1.198) 

_cons 
5.298***  5.496***  5.900***  6.296***  6.725***  6.980***  6.993***  7.330***  7.576***  
(23.496) (32.203) (38.542) (44.773) (47.522) (45.418) (38.056) (33.323) (23.285) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.644 0.644 0.644 0.644 0.644 0.644 0.644 0.644 0.644 
F-Stat 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74
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_cons 
5.369***  5.507***  5.865***  6.455***  6.669***  7.000***  7.222***  7.536***  7.991***  
(26.030) (31.796) (37.001) (45.726) (47.381) (44.111) (38.995) (35.648) (24.098) 

Individual FE Y Y Y Y Y Y Y Y Y 

YYYYYYYYYY
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The study's insights are crucial for corporate strategy, highlighting that the relative benefits 

�R�I���*�,���Y�D�U�\���Z�L�W�K���D���I�L�U�P�¶�V��pollution level and productivity level. For high-
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adj. R-sq 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674 
F-Stat 73.35 73.35 73.35 73.35 73.35 73.35 73.35 73.35 73.35 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood 27402 27402 27402 27402 27402 27402 27402 27402 27402 
N 14,721 14,721 14,721 14,721 14,721 14,721 14,721 14,721 14,721 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 
The RIF treatment effects models11, both standard and IPW-adjusted, demonstrate that 

�&�K�L�Q�D�¶�V���O�L�V�W�H�G���I�L�U�P�V investing in GI consistently exhibit higher productivity up to the 80th 

productivity quantile compared to those without GI (Figure 9, Table 15 and Table D1). While 

UQR analysis previously reveals some negative, albeit insignificant, marginal effects of GI, RIF 

treatment effects affirm the positive average economic impact of GI particularly at lower levels 

of productivity. 

Figure 10 Non-linear estimations based on RIF treatment effects (High-pollution sample) 

 

Table 16 Results of RIF treatment effects with IPW (High-pollution sample) 

High-pollution Model 210 Model 211 Model 212 Model 213 Model 214 Model 215 Model 216 Model 217 Model 218 
RIF-Weighted Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 

0.000Q70-----------
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(3.082) (3.728) (3.859) (1.966) (3.400) (3.830) (2.341) (2.015) (-1.042) 

lnEMP 
0.075 0.044 0.045 -0.081** -0.071** -0.154***  -0.118***  -0.134** -0.315***  

(1.476) (1.111) (1.106) (-2.648) (-2.757) (-4.509) (-3.614) (-3.234) (-3.527) 

_cons 
5.717***  6.122***  6.410***  7.133***  6.977***  6.838***  7.165***  7.576***  9.072***  
(24.387) (28.377) (24.231) (38.550) (45.062) (41.631) (40.106) (33.806) (19.199) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 
F-Stat 20.63 20.63 20.63 20.63 20.63 20.63 20.63 20.63 20.63 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -5059 -5059 -5059 -5059 -5059 -5059 -5059 -5059 -5059 
N 4,594 4,594 4,594 4,594 4,594 4,594 4,594 4,594 4,594 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

The RIF treatment effects models, both standard and IPW-adjusted, demonstrate that 

�&�K�L�Q�D�¶�V���O�L�V�W�H�G���I�L�U�P�V investing in GI consistently exhibit higher productivity up to the 80th 

productivity quantile compared to those without GI (Figure 9, Table 15 and Table D1). While 

UQR analysis previously reveals some negative, albeit insignificant, marginal effects of GI, RIF 

treatment effects affirm the positive average economic impact of GI particularly at lower levels 

of productivity. 

Figure 10 indicates that in high-polluting firms, GI's impact on productivity shifts with 

productivity levels. Firms with lower productivity initially face negative effects, hindered by 

limited capabilities in efficient technology implementation. As productivity increases, these 

firms become more adept at leveraging new technology, both green and non-green innovations, 

-echnology, 
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ECO 
0.200* 1.111***  0.909***  0.727***  0.544***  0.371***  0.185***  -0.140** -0.612***  
(2.221) (42.774) (33.409) (26.205) (19.514) (12.699) (5.564) (-3.262) (-11.855) 

Vr 

 

0.423** 0.147***  0.177***  0.197***  0.183***  0.201***  0.252***  0.274***  0.314***  
lnNECOINT (2.950) (7.282) (8.190) (9.143) (8.896) (8.895) (8.926) (7.267) (5.673) 

lnCAPINT 
0.318 0.01 0.023 0.025 0.037* 0.02 0.007 
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full, non-pollution, high-tech, low-tech, and non-manufacturing samples indicate crowding-out 

effects of GI in firms without environmental issues. 

 

5. CONCLUSION  

The article begins by estimating the classical CDM model to examine the economic effects 

of R&D activities in listed companies. It then introduces an extended CDM model to test for a 

crowding-out effect of green innovation (GI) on other innovations, by assessing the separate 

impacts of GI and non-green innovations on firm productivity. Additionally, unconditional 

quantile regression (UQR) is employed to investigate potential non-linear relationships between 

innovations and productivity across the productivity distribution, and to examine how crowding-

out effects may vary among different types of firms at different levels of productivity. Finally, 

the robustness checks conduct conditional quantile regression (CQR) estimations, as well as 

recentered influence function (RIF) estimations that compare the treatment effects on 

productivity when a firm invests in GI compared to no GI investments. 

The results of the first step of the CDM model, which estimates R&D intensity, indicate 

that environmental regulations impose additional cost burdens and reduce funds available for 

firms' R&D investments. The analysis corrects for firm selection bias in R&D expenditure 

disclosure using the Hackman model. In the second step, the bias-corrected R&D intensity is 

used to predict firms' patents in the CDM model and green/non-green patents in the extended 

CDM models. The findings suggest that the efficiency of R&D input-output conversion is low 

for GI in firms without pollution issues but high in firms with pollution issues, particularly high-

polluting firms and manufacturing firms. This implies that crowding-out effects of GI in terms of 
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Lastly, the estimations of recentered influence function (RIF) treatment effects indicate 

that, on average, having GI brings positive productivity growth below the 80th quantile of the 

productivity distribution. However, it becomes pure costs for firms without pollution issues at 

the top-level of productivity. High-polluting firms with productivity levels above the median are 

more likely to benefit from the reduction of pollution costs or efficiency improvements induced 

by GI, as there may be a capability threshold for transforming technology into productivity. 

Despite the valuable insights provided by this research, there are some limitations to be 

considered. Firstly, the analysis is based on data from listed companies, which may not fully 

represent the entire population of firms. The findings may not be generalized to non-listed or 

smaller firms that might have different characteristics and resource constraints. Secondly, the 

study focuses on the impact of GI on firm productivity, neglecting other important factors that 

could influence productivity, such as market competition and managerial practices. Future 

research should consider exploring the mechanisms through which GI impacts productivity, such 

as the role of organizational capabilities, knowledge transfer, and technological spillovers, could 

deepen our understanding of the underlying processes driving the relationship. Moreover, future 

studies could investigate the long-term effects of GI on firm performance and sustainability, and 
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SOE 15,714 0.46 0.50 0 1 
 
Table A2 Variable explanations 

Type Symbol Variable Definition Source 

Dependent 
variable 

RD R&D dummy Dummy variable that whether a firm disclose its 
R&D expenditure information 

Wind 
Database 

RDINT R&D expenditure 
intensity 

The natural logarithm of the amount of R&D 
expenditure per employee of listed firms (in 
millions RMB per thousand employees). 

Wind 
Database 

PAT Patent 
applications 

Rolling average of firms' patent applications in 
three years. 

Wind/CNRDS 

lnPATINT Patent intensity The logarithm of patent applications per 
employee of listed firms 

Wind/CNRDS 

ECO Eco-patent 
applications 

Rolling average of firms' eco-patent applications 
in three years. 

CNRDS 

lnECOINT Eco-patent 
intensity 

The logarithm of eco-patent applications per 
employee of listed firms 

CNRDS 

NECO Other patent 
applications 

Rolling average of firms' patent applications 
other than eco-patent applications in three years 
(All patent application minus eco-patent 
applications). 

Self-calculated 

lnNECOINT Other patent 
intensity 

The logarithm of other patent applications per 
employee of listed firms 

Self-calculated 

lnVA Value added The natural logarithm of total sales revenue per 
employee of listed firms. 

CSMAR 

Key 
variables 

lnPPC Provincial 
pollution charge 

The natural logarithm of total amount of 
pollutant emission charges (in millions RMB). 

China 
Environmental 
Yearbook 

lnIPT Industrial 
pollution 
treatment 
investment 

The natural logarithm of total amount of 
industrial pollution treatment investment in 
each provinces (in millions RMB). 

China 
Statistical 
Yearbook 

lnFSTK Firm technological 
knowledge stock 

The natural logarithm of firms' patent 
applications in the past 2 years 

Wind/CNRDS 

lnPTL
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CR4 Industrial market 
concentration 

The market occupation ratio of the largest four 
firms in the industry 

Self-calculated 

Exclusion 
restrictions 
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(0.018) (0.018) (0.046) (0.045) (0.043) (0.043) (0.021) (0.021) (0.022) (0.022) (0.039) (0.039) (0.023) (0.023) 

lnPPF(-2) 0.0325** 
 

0.0209 
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Sample R/P Obs Mean Std.Dev. Min Max 

Full sample 
Realistic 15,714 61.95 293.54 0 10045.00 
Predicted 14,904 63.14 284.35 0 7977.02 

High-pollution 
Realistic 4,833 45.20 212.67 0 4416.33 
Predicted 4,648 46.12 216.31 0 5294.40 

Non-pollution 
Realistic 10,881 69.39 322.76 0 10045.00 
Predicted 10,256 70.86 309.35 0 7914.95 

High-tech 
Realistic 8,361 83.58 340.96 0 10045.00 
Predicted 7,805 86.69 328.02 0 7637.60 

Low-tech 
Realistic 7,353 37.36 225.47 0 4718.00 
Predicted 7,099 37.25 222.33 0 5801.64 

Manufacturing 
Realistic 9,207 80.43 328.57 0 10045.00 
Predicted 8,676 82.63 314.92 0 7705.33 

Non-
manufacturing 

Realistic 6,507 35.81 232.76 0 4718.00 

Predicted 6,228 35.99 232.39 0 5838.48 
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  (0.051) 
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Table C2 Results 
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Table C4 Results of UQR on CDM models (Low-tech sample) 

Low-tech Model 120 Model 121 Model 122 Model 123 Model 124 Model 125 Model 126 Model 127 Model 128 
UQR Q10 Q20 Q30 Q40 Q50 Q60 
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Standard errors in parenthesis 
        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

Figure D 1 Non-linear estimations based on RIF treatment effects (High-tech sample) 

 

 

 

 
 
 
 
 
 









 63 

 

Table D9 Results of RIF treatment effects with IPW (Manufacturing sample) 

Manufacturing Model 282 Model 283 Model 284 Model 285 Model 286 Model 287 Model 288 Model 289 Model 290 
RIF-Weighted Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
0.045 0.033 -0.031 -0.03 -0.053* 0.021 0.300***  0.182***  0.035 

(1.473) (1.251) (-1.218) (-1.166) (-2.090) (0.853) (13.165) (6.003) (0.898) 
Vr  0.151***  0.156** 0.180***  0.176***  0.216***  0.172** 0.158***  0.260***  0.500***  

lnNECOINT (3.400) (3.165) (3.425) (3.429) (3.873) (3.270) (4.139) (5.575) (6.439) 

lnCAPINT 
0.102***  0.092***  0.107***  0.154***  0.148***  0.099***  0.087***  0.087***  0.156***  
(4.030) (4.170) (4.879) (6.603) (6.130) (4.302) (4.909) (4.049) (4.571) 

lnEMP 
0.049 0.065* 0.017 0.002 0 -0.052 -0.060* -0.045 -0.014 

(1.435) (1.970) (0.515) (0.051) (0.012) (-1.546) (-2.356) (-1.387) (-0.260) 

_cons 
5.057***  5.352***  5.514***  5.467***  5.650***  6.191***  6.369***  6.472***  5.961***  
(29.934) (34.539) (35.522) (34.106) (34.015) (39.107) (52.166) (42.155) (24.334) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 
F-Stat 21.73 21.73 21.73 21.73 21.73 21.73 21.73 21.73 21.73 
Prob > F (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Log likelihood -9917 -9917 -9917 -9917 -9917 -9917 -9917 -9917 -9917 
N 8,583 8,583 8,583 8,583 8,583 8,583 8,583
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(1.614) (2.375) (3.708) (2.306) (0.588) (-0.624) (-0.982) (-0.196) (-0.492) 
Vr 

 

0.435***  0.404***  0.414***  0.343***  0.327***  0.348***  0.374***  0.406***  0.504***  
lnNECOINT (8.941) (9.914) (10.798) (9.250) (9.074) (9.067) (9.537) (8.597) (7.211) 

lnCAPINT 
0.063** 0.105***  0.109***  0.092***  0.081***  0.077***  0.101***  0.094***  0.105** 
(2.742) (5.017) (5.026) (4.440) (4.051) (3.599) (4.179) (3.421) (2.603) 

lnEMP 
-0.068+ -0.033 -0.043 -0.055+ -0.060* -0.062* -0.052+ -0.067* -0.081+ 
(-1.819) (-1.068) (-1.443) (-1.891) (-2.182) (-2.177) (-1.783) (-1.984) (-1.763) 

_cons 
5.725***  
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