Developing SARS-CoV-2 assays and standards to enable studies of viral host range and vaccine development

Infectious disease pandemics

Not just a public health impact

Health for Animals (2015)

- Generationand characterisation of emeging virus pseudotypes to enable far reaching epidemiology studies, hesell interactions and the development of vaccinees and antivirals
- <u>Seroepidemiology</u> of filoviruses and henipaviruses African fruit bats to guide public health interventions.
- The study of theimmunogenic hierarchy of viral envelope protein (VEP) epitopes to aid the construction of antigenically optimised isoforms.
- <u>Bioinformatic</u>

Application of SAR-SoV2 PV

1. Developing assays and standards

Murray et al. 2021 Journal of Infection Di Genova et al. 2021 Bio-Protocols James et al. 2021 Viruses

• Pseudotyped viruses [ELISA]

Correlation with authentic virus neutralisation

500000	Neutralisation

Validation of commercial 'surrogate' neutralisation ass

Application of SAR-SoV2 PV

- 1. Developing assays and standards
 - Pseudotyped viruses [ELISA]
 - Serological standard [NA]

E Did Marled Harlth	
WHO-BS 2020 2403	
SABASTORI ERE STANDARD. FALLON 020	Ceneva 9 - <u>10 December</u> , 2
	Instrant, tatematar
	Strum Tienerster
antibody	

Application of SAR-SoV2 PV (2)

2. Vaccine development

AP205RBMVLPbasedvaccine

Liu et al. 2021 Vaccines

Stimulation of binding Abs

Application of SAR-€oV2 PV (3)

3. Treatment/Entry inhibitor development

Jose et al. 2021 Submitted

• Small molecule inhibitors

Protease inhibitors

Metal nano-particle polymer membranes

Application of SAR-€oV2 PV (3)

3. Treatment/Entry inhibitor development

Jose et al. 2021 Submitted

- Small molecule inhibitors
- CRISPR/CAS-9 genomic screen for entry inhibitors

Negative selectio CRISPRV screen

SARSCoV2 TK PVhducedcell death

Application of SAR-€oV2 PV (4)

- 4. Animal hosts and tissue tropism
 - VoC reverse zoonosis threat (Dalan Bailey Pirbright Institute)
 - Infection of blood vessel cells (Catherine Hall,

Lyssavirus -

<u>UNIVERSITY OF SUS</u>SEX Mariliza Derveni Beth Auld

Leandro Castellano Tom Stiff

Luca Biasetti Catherine Hall