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of Morphogenesis that developmental biologists are only beginning to uncover. In

itself this is no bad thing, but since no entirely satisfactory method of encoding re-

ally complicated neural networks in a compact way has been discovered, this paper

represents a step towards exploiting the encoding scheme used by mother nature.

The inspiration behind the encoding scheme described in this paper comes from

biology, but it was designed with evolutionary robotics �rmly in mind, and not as a

defensible model of biological development. The overall picture to be gleaned from

the model, described in the next section, will at least be reminiscent to the devel-

opmental biologist of what actually takes place during Morphogenesis, but where

precise functional details of a particular developmental mechanism were unavailable,

or where the biological details appeared to con
ict with the goals of evolvability and


exibility of design necessary to any encoding scheme, alternative mechanisms were

implemented. Biological terms are used extensively throughout the paper. Un-

less stated otherwise they should be seen as explanatory tools rather than strong

references to their biological counterparts.

2 An Overview of the Developmental Model

This section gives a general overview of the encoding scheme in three stages. First

it describes what takes place at the level of the genome, then how this controls the

behaviour of individual cells, and �nally how a multicellular `organism' develops

from a single cell.

In the current scheme, a genome consists of a single string of what might be

thought of as base-pairs of nucleic acids (i.e. one of four characters). The start of

each gene on the genome is identi�ed by a certain pattern of preceding characters,

similar to the TATA box on a real genome (see [6] for a good introduction to de-

velopmental biology). Genes are of �xed length. Each gene is responsible for the

production of a particular protein and in turn is regulated by certain combinations

of proteins within the cell. What is important to realise at this stage is that genes

create proteins that regulate genes (see [15] for a beautifully clear example of this),

forming genomic regulatory networks (GRNs) that control the entire behaviour of

each cell during development. These are best thought of as independent dynamical

systems within each cell, capable of being knocked from one basin of attraction into

another by internal and external stimuli, following independent trajectories through

state space
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(for full details see Section 4.1).

The proteins within each cell are divided into di�erent classes. Each has a unique

e�ect on the gross behaviour of the cell. The ability of a given protein to perform

its role within its class depends on its `shape' (for a full explanation of each class

and how they interact with each other see Section 4.3). Signal proteins di�use out

of one cell and into another, allowing cells to in
uence each other at a distance. The

direct consequences of this in
uence may take one of two forms, either perturbing

the cell's internal dynamics (turning certain genes `on' and others `o�') or applying

a force on the cell body towards or away from the protein source. In practice, there

are many di�erent signal proteins, from many di�erent sources, entering each cell at

any given time, and each cell will only respond to a subset (depending on the state
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For a fuller account of this interpretation and, to my knowledge, the �rst exposition of genomic

functionality as a regulatory network, see [13].
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Figure 1: Two evolved neural networks. The network on the left exhibits corridor following

behaviour, while that on the right exhibits obstacle avoiding behaviour. The input region

of the developmental environment was divided into eight sub-regions, from top to bottom,

corresponding to the eight infra red light sensors on the Khepera robot. The output region

was divided into two sub-regions, corresponding to the left and right motors of the Khepera.

small

of its internal dynamics). This means that di�erent cells may behave di�erently

in response to identical external stimuli, and also that di�erent cells may behave

identically in response to di�erent external stimuli.

Initially a single cell is placed in an environment containing a number of strate-

gically placed extra-cellular signal protein sources. These �xed sources provide a

reference for the developmental process. After the initial cell begins to divide, indi-

vidual cells divide and move, as part of one big dynamical system coupled together

by signal protein interactions, until, eventually, they di�erentiate (see section 4.4).

When this occurs, a number of dendrites grow out from each cell guided by `growth

cones' sensitive to unique combinations of signal proteins. On contact with another

cell, a synaptic connection is formed (see Section 4.5). After every cell has di�eren-

tiated and every dendrite has either connected or died, thresholds and weights are

assigned to each cell and dendrite respectively, and inputs and outputs are assigned

to cells which lie in speci�c regions of the developmental environment, to form a

neural network ready for testing (see section 4.6).

3 Preliminary Experiments

Before going into the details of the encoding scheme, I will �rst outline the results

of preliminary



to robot. Both experiments involved a population of one hundred character strings,

each of which was 5000 (initially random) characters long. The genetic algorithm

in both cases was based on a simple generational model with rank-based selection.

Crossover and mutation were the only genetic operators used. Crossover happened

at every `breeding' and the mutation rate was set at 0.002 mutations per character

on the genome (about 12 mutations per genome on average).

In the �rst experiment, the robot was placed at one end of a long corridor with

many bends, and neural networks were evolved that could guide it down the corridor

without crashing into the walls. The �tness function (similar to that used in [3])

returned the normalised product of three terms: one for going as fast as possible,

one for going as straight as possible and one for staying away from walls. By

generation 10 networks had evolved that could guide the robot down the corridor.

The network displayed in Figure 1, which was the �ttest individual of generation 50,

could successfully guide the robot down the corridor without it touching the walls.

The experiment was run for a total of 500 generations but no real improvement was

made after the �ftieth generation.

In the second experiment, the robot was placed in a rectangular environment

containing many small cylinders. The �tness function was the same as that used

above. Again, by generation 10, neural networks had evolved which evoked obstacle

avoiding behaviour in the robot. The network displayed on the right hand side of

Figure 1 is again the �ttest member of the 50th generation. This network proved to

be very good at obstacle avoidance. However, since it only makes use of two of the

available eight sensors on the robot, the robot has several `blind spots', including

straight ahead for small objects.

4 The Encoding Scheme in Detail

The reader who is not interested in the details of the algorithm that converts char-

acter strings to arti�cial neural networks may skip this section if they want. They

should, however, be warned that a full appreciation of the issues raised in Section 5

is not possible without a more involved understanding of the encoding scheme.

4.1 The Genomic Regulatory Network (GRN)

Proteins regulate genes which produce proteins. In other words proteins regulate

other proteins. Each unit in the GRN corresponds to exactly one protein in the cell

and the pattern and nature of links between units is de�ned by which protein(s)

regulate which other protein(s). The activity of each unit equals the intra-cellular

concentration of its particular protein (which is equal in turn to the activity of the

gene that produces it: maximum 1.0, minimum 0.0). In reality, it may (and usually

does) take the presence of several proteins and the absence of several others to

activate a particular gene (thus increasing the cellular concentration of the protein

it encodes for). There are usually several links fanning into each unit in the GRN,

each with a weight between 2.0 and -2.0, and each unit has a unique threshold that

sets the lower bound of the linear threshold activation function.



This section codes for a protein. Three characters are taken at a time
creating a protein string from a 64 letter alphabet.
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Figure 3: A protein has been rotated until the match between the link template on the

gene and the corresponding protein segment goes over a certain threshold. The contribu-

tion this protein makes to the regulation of the gene is then calculated from matching the

diametrically opposite side of the protein with an arbitrary �xed template.

and 64, and then to a decimal between plus and minus one.

In the nucleus of a real cell, which and how many genes any given protein regulates

depends on that protein's shape. This shape is arrived at by a complicated folding

process, the biological intricacies of which are poorly understood. In the model

described in this paper, each protein is a circular string. To work out whether

any given protein plays a part in



directly from the state of that cell's GRN. However, the activations of those genes

(and hence the corresponding units in the GRN) within that cell that are regulated

by signal proteins are a function of the amount of signal protein di�using into that

cell through the cell wall. See Section 4.4 for an explanation of how the amount of

signal





a linear threshold function with lower bound set by the threshold on each node. All

internal variables are then updated.

Forces on each cell are calculated by the application of mover proteins to the signal

proteins in each cells locality. Each mover protein causes a force proportional to,

and in the direction of the maximum gradient of, the weighted sum of the local

chemical concentrations of the members of its particular subset of signal proteins.

The weights in this sum correspond to the mover protein's a�nities for each of the

members of its subset. The cell moves in the direction of the resultant of these

forces.

If any internal variable (for splitting or for di�erentiation) has gone over its thresh-

old, then the appropriate action takes place. Note that when a cell splits, each

daughter cell is identical to the mother cell in all but a slight positional displace-

ment at right angles to the axis of cleavage.

When the internal di�erentiation variable within a cell goes over a threshold, the

cell di�erentiates. At this point the cellular concentrations within the cell become

�xed, including the levels of signal proteins output from that cell.

4.5 Di�erentiation and Dendrite Growth

At di�erentiation the number of dendrites that will grow from a cell is calculated.

This is the number of dendritic proteins whose intra-cellular concentration lies above

the threshold associated with that protein (see Section 4.3). As with mover proteins,

each dendritic responds to its own particular subset of signal proteins. Growth starts

from the side of the cell where the weighted sum of the concentrations of each signal

protein in this subset is greatest.

Dendrites are guided by a trident shaped `growth cone' with three sensors, one

at the tip of each fork, each responsive to the dendritic protein's subset of signal

proteins. At each time step the concentrations at each sensor are calculated, and

the position of the base of the trident is updated to that of the trident `tip' with the

highest concentration. In this way the dendrite is steered, at a �xed speed, towards

the local maximum of the weighted sum. This will usually be another cell, at which

point the dendrite forms a connection with that cell and stops. However, since the

sum is weighted, the dendrite may actively steer away from signal protein sources

as well as towards them. This creates two sorts of problems. One, dendrites may

grow o� to in�nity, and two, they may go into `orbit' around local chemical minima.

For this reason there is a maximum length to which a dendrite may grow before it

is said to be dead.

4.6 Interpreting a Neural Network

Once all cells have di�erentiated, and all dendrites have either connected or died,

the �nished structure may be interpreted as an arti�cial neural network (ANN)

which can then be used to control a robot. The architecture and connection matrix

of the ANN is taken directly from that of the developed organism. Activation is

interpreted to 
ow in the direction of dendrite growth. Each link is either inhibitory

or excitatory (depending on the results of a template match. See Section 4.3).

The weight on each link is calculated from the concentrations of the signal protein

subset attributed to the dendritic protein responsible. The weighted sum of these



concentrations, at the point where the `growth cone' connects, is divided by the

maximum possible value of this weighted sum (i.e. as if all the concentrations were

1.0) to give a number between 0 and 1. This is then scaled appropriately.

Thresholds on the units in the ANN are calculated directly from the concentration

levels of threshold proteins in the corresponding cells (see Section 4.3). Input and

output units to the ANN correspond to those cells that end up in certain regions of

the developmental environment. See Section 3 for an example of how this is done.

5 Issues of Evolvability

There are two properties essential to an encoding scheme capable of evolving com-

plex control architectures for robots. Firstly, it must be robust with respect to the

genetic operators used by the genetic algorithm (cross-over, mutation, transloca-

tion, genome growth etc.), and secondly, it must be capable of `subroutining', in the

sense of encoding for repeated structure in a compact way. The encoding scheme

described in this paper displays both of these properties, which are described below,

and it is this that makes it potentially very powerful indeed.

5.1 Robustness to the Genetic Operators

If an encoding scheme is to work at all (i.e. to provide the basis for something more

than random search) then it must be robust with respect to the genetic operators

it is used with. It is crucial, if evolution is to progress, that `�t' phenotypic traits

are not destroyed by the breeding process. Ideally, with the exception of mutation,

all genetic operators should cause as little phenotypic disruption as possible. The

crossover operator is a special case, since it acts on two genotypes as opposed to

one, but I would argue along with [7] that it is only meaningful, in an Evolutionary

Robotics context, to use crossover in conjunction with converged populations.

The encoding scheme, reported here, is robust with respect to operators involving

translocation and genome growth. This allows two things: �rstly, genes that work

in tandem (e.g. to create a `�t' subnetwork in the phenotype) may be relocated next

to each other on the genotype, thus minimising the chance of their separation by

crossover, and secondly, open ended evolution becomes possible, where phenotypic

complexity is not restricted by the original size of the genome. This robustness

follows from the simple reason that, using template matching, parts of the genotype

address other parts of the genotype (to form the links of the GRN) by the character

sequences that occur there, and not, as in many encoding schemes, by a function of

the region's location on the genome. If these sequences of characters are relocated



small scale changes to the GRN that controls development may nevertheless pro-

duce large scale changes in the phenotype (whole new portions of network may grow,

or sub-structures may get repeated, see below). Also a small change to the GRN

may do nothing but slightly alter one parameter of the phenotype. Slight mutations

to the GRN, then, provide the right range of changes in the phenotype.

What is less obvious is why slight changes to the genotype, in the encoding scheme

reported here, should result in slight changes to the GRN. Section 4.2 explains

how the GRN is decoded from the genome using a variety of template matching

operations. The problem is that if two or more templates overlap then a single

mutation at this point may result in a disproportionately large change to the GRN.

In order to minimize this possibility, the template matching routines were designed

to extract the maximumamount of information from templates that were as short as



tal environment. However, cells elsewhere in the developmental environment may

respond to di�erent signal proteins subsets and may, therefore, develop asymmet-

rically. The �nal developed network will be asymmetric as a whole but with two

identical subnetworks.

6 Conclusions

This paper represents an attempt to harness the developmental power of morpho-

genesis to the still young discipline of Evolutionary Robotics. A biologically inspired
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