A fully abstract semantics for concurrent graph reduction

A A ∽EFF EY

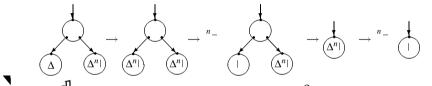
AB \neq AC = spprprsnts \neq u strts nt soor vrntert unt p λ uus truns v rtons = \neq rist prsnt su re $v \neq$ strag or on eu strton ort un tp λ uus on ntrtag on AB A Yn Gs or ont λ uus = AB A Yn Gs or ont λ uus = AB A Yn Gs or s s on et ostout rostruton touts rn = s snot n = \neq nt n n p nttons o s rn = r u n = s nt \neq =

1 Introduction

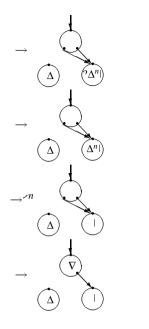
spprs out r tons p t nt o^{a_1} so o put rs n full abstraction, n concurrent graph reduction—Fu str ton st stu or t n not ton n op r ton s nt s—Con urr nt ar p r u ton s n \cdot f^{a_1} nt p r p nt ton t n qu \cdot or non str t \cdot un ton pro ar n a_2 $n = n = s^{-1}$

nt sppr ppt t nqu so $AB \neq A$ Y n G to pr s nt \sim u strt not ton s nt so rt on urr nt or pru ton sort \Rightarrow_V n n EY \sim E sto t

non, so, us to sorro or strton, oprpntton, non urrn tor−


1.1 Full abstraction

Fu str ton, or an n^{1} , por st r tons p


t s v op AD \rightarrow H s n p nt ton \rightarrow t ost out r ostr u ton \neg H os rv t t \rightarrow t ost out r ostr u ton nt $4^{\frac{5}{9}}$ pon nt t to u t n $4^{\frac{5}{9}}$ p \rightarrow $7^{\frac{5}{10}}$

$$I = \lambda x \cdot x \qquad \Delta = \lambda x \cdot x \qquad M^{-}N = N \qquad M^{n+} \quad N = M(M^{n}N)$$

nt v u ton or $\Delta^{n+} \mid \rightarrow^{*} \mid s$
 $A^{n+} \mid a \geq (A^{n})(A^{n}) \Rightarrow A^{n} \mid a \geq A^{n}$

 $\Delta^{n+} \rightarrow (\Delta^n l)(\Delta^n l) \rightarrow {}^{n-} l(\Delta^n l) \rightarrow \Delta^n l \rightarrow {}^{n-} l$ $us \Delta^n l t \quad s \quad {}^{n-} r \quad u \text{ tons to } tr \quad n \quad t \quad s \quad {}^{f} \text{ponnt} \quad o \quad up \quad s$ $us \quad op \quad n \neq \Delta^n l \quad n \quad t \quad r \quad u \quad ton \quad \Delta^{n+} \quad l \rightarrow (\Delta^n l)(\Delta^n l), \quad n \quad n \quad r$ $s \quad n \quad r \quad t \quad s \quad nt \quad {}^{f} \text{tr} \quad s \quad \sigma \text{ or } t \quad sr \quad u \quad ton, \quad r \quad not \quad s \quad un \quad ton$ $pp \quad ton$

 $s n \not A^{\Pi}$ n s us t p nt ton $\mathfrak{o} \beta r$ uton t sus tu ton n r u $(\lambda w. M)N \rightarrow M[N/w]$, s p rt op $\mathfrak{o} N$ or o urr n $\mathfrak{o} w$ n M, n op t n sto r u s p rt n r \mathfrak{o}_{v} t s n \mathcal{A}^{Π} n \mathfrak{o} , rt rt n op n \mathfrak{s} tr s, op *pointers to* tr s, t ts r u s nt \mathfrak{o} *graphs* rt rt n s nt \mathfrak{o} *trees* - For \mathfrak{o} p, t

up tn 🛃

pn tr_vrs

nuton

up tn 🔿

 \rightarrow

not con uent or Church Rosser, s n sp n tr v rs

- Gr = o tonss nt un port nt so = rp n on_v r = = = t n on_v r = t out = r = o tn = n ou (p tt sto tru sn = r = o tons ntro u on us = or t tons
- $a_{a_{a_{v}}}n_{a_{v}}ss$ nt un port nt so $a_{v}rp$ n on $v_{v}ra_{a_{v}}rrsp t_{v}$ or t r ts no s r t $a_{a_{v}}$ or not n p rt u r, t s nst t on urr nt v u ton s s nt qu v nt to s qu nt v u ton -
- Ternt trnsprn, nst t t s s nt un port nt « r p ont ns op a no, or pont r to no –
- rrnurorpp tonsorror u strts nts

FY GC F ZA - Anu recopromonstrt "un ton nou sonot - H s oprort Gn, us e opt t tons - n opt r root r peephole opti mizers EY - E, C - rp on s tr t not rs nt que nt ut or - nt r sont s sorr t t n no t t n su opt t ton v t soprton v our n ont t rs

2 Tree reduction

s C pt r pr s nts su r α (5 st n) or on ω str t o s or \cdot t ost out r ost r u t on α t unt p λ u us -t on ntr t s on ABPA Y n G s or on t λ u us ut so n u s t r \cdot ro ABPA Y BAPE DPEG BAPA DPEG et al_ B D ECE n -

2.1 The λ -calculus with P

nt sC pt r, susst t or v op ABPA Y n G s on leftmost outermost r u ton sst s nt ssort non strict on n u ssu sA G s , FAPB \neq s on r, E s Gorr, \neq E s r n, n H s H DA et al.

nt unt p λ uus, 4 pr ss ons rountons, nt sountons to untons s nputs, nr turn ot rountons nr a rt s s pur tor or o putton, strt or ons rtons to to unt p λ uus stror so 4 pr ss on

• A free variable x⁻

• An application MN⁻

• An abstraction $\lambda x \cdot M^-$

sn 🖌

ours v s to ω continuous oun t ons, t t s \sim

 $a \, \mathrm{st} \, \mathrm{tor} \, a \, \leq a \, \leq \cdots$

t n

$$fa \ st$$
 $t \ fa \ \leq fa \ \leq \cdots$

For \checkmark p, t s rst odd un ton s n

-st $t \text{ or } \leq -\leq \mathbf{1} \leq \cdots$

ut

 $\mathbf{D}_{\mathbf{r}} = \mathbf{D}_{n+} = (\mathbf{D}_n \to \mathbf{D}_n)_{\perp}$

 $F\mathbf{D}_i = (\mathbf{D}_i \rightarrow \mathbf{D}_i)_{\perp} = \mathbf{D}_{i+1}$

n nor rtosot t $\mathbf{D} \leftarrow \mathsf{sts}$ sot tF sont nuous nor rtoot s prsnt

- A not on @ domain, sut tt on pont on s on, n F s ~un tor t n o ns⁻
- A not on \bigcirc order t n o ns t st nt n r v r n \bigcirc o ns s t⁻
- A not on ω continuous functor t n o ns, su t t F s ont nuous⁻ Fo o n \mathbf{a} , us t category of ω cpo s with embeddings

st ppropr t not on \mathbf{v} or \mathbf{r} o \mathbf{ns}^- n F s ont nuous un tor, t ust v st \mathbf{v} st \mathbf{v} po nt, us sour \mathbf{v} nt on \mathbf{v} \mathbf{D}^-

rstortsston prsntttn tsortsonstruton[−] s ⇒ntsortrnrorso spt_eortor[−]ntrst • no $t | ift A in C_{\perp} \bullet or A A$

rro e^R s un qu \nexists^n , so $\checkmark e A \rightarrow B$ in CPOE $n f B \rightarrow A$ in ω CPOE t n

$$(e \circ f \le id, f \circ e = id)$$
 p s $e^R = f$

 $()_{\perp} \quad \omega CPOE \rightarrow \omega CPOE \quad st \quad \ \text{ or } t \text{ n sum for } t$

- A_{\perp} in ωCPOE or A in ωCPOE^-
- $e_{\perp} A_{\perp} \rightarrow B_{\perp}$ in $\omega \text{CPOE} \bullet \text{or } e A \rightarrow B$ in ωCPOE^-

 $\Delta \quad \omega \text{CPOE} \rightarrow \omega \text{CPOE} \quad \text{st} \quad \text{son (un tor t)}$

- $\Delta A = (A, A)$ in $\omega CPOE \bullet or A$ in $\omega CPOE^-$
- $\Delta f = (f, f) \quad \Delta A \to \Delta B \text{ in } \omega \text{CPOE} \quad \text{or } f \quad A \to B \text{ in } \omega \text{CPOE}^-$

 $(\rightarrow) \quad \omega_{CPOE} \rightarrow \omega_{CPOE} \ s \ t \ \omega \ ont nuous \ un \ ton \ sp \ \ un \ tor \ t$

- $(A \rightarrow B)$ in $\omega \text{CPOE} \sigma \text{ or } (A, B)$ in ωCPOE^-
- $(e \to f)$ $(A \to B) \to (A' \to B')$ in ωCPOE or (e, f) $(A, B) \to (A', B')$ in ωCPOE r $e \to f$ s $\stackrel{\text{sl}}{\to} \text{n}$

$$(e \to f)g = f \circ g \circ e^{k}$$
$$(e \to f)^{R}g = e \circ g \circ f^{R}$$

st nt o tnocpoe-

DEF ⁻ A o on $\{e_i \ A_i \rightarrow A \text{ in } \omega \text{CPOE} \mid i \text{ in } \omega\}$ s determined \checkmark $\forall \{e_i \circ e_i^R \mid i \text{ in } \omega\} = \text{id}^-$

Any determined cocone is a colimit_

$$g = \bigvee \{ f_i \circ e_i^R \mid i \text{ in } \omega \}$$

$$g^R = \bigvee \{ e_i \circ f_i^R \mid i \text{ in } \omega \}$$

n nsot tg st unqu $\{e_i \ A_i \rightarrow A \mid i \text{ in } \omega\}$ s o t⁻ us

- Any ω chain in ωCPOE has a determined cocone_

★ $F⁻ t {<math>e_i^j A_i \rightarrow A_j \mid i \le j$ } n ω n⁻An *instantiation* **•** t s n s *•* un t on f su t t

dom
$$f = \omega$$
 $fi \in A_i$ $e_i^{jR}(fj) = fi$

tn ^An

$$A = \{ f \mid f \text{ s n nst nt t on} \}$$

t t pont s or
$$\operatorname{rn}_{\mathfrak{F}}$$
 s s n ω po, t on
 $\bigvee \{f_i \mid i \text{ in } \omega\} j = \bigvee \{f_i j \mid i \text{ in } \omega\}$
n $\mathfrak{P}_n^{\mathfrak{I}}$

$$e_{i}a_{j} = \begin{cases} e_{i}^{j}a \quad \forall i \leq j \\ e_{i}^{R}a \text{ ot } r \quad s \end{cases}$$

$$e_{i}^{R}f = fi$$
ns o t t { $e_{i} A_{i} \rightarrow A \mid i \text{ in } \omega$ } s t r n o on \neg

$$DEF \quad \neg \mathbf{D} \text{ st } t r \quad n \quad o \quad t \text{ ot } t \quad \omega \quad n$$

$$\mathbf{D}_{i} = \mathbf{D}_{i+} = (\mathbf{D}_{i} \rightarrow \mathbf{D}_{i})_{\perp}$$

$$t \quad e_{i} \mathbf{D}_{i} \Rightarrow \mathbf{D}_{i} \text{ in } \omega \text{CROF} \quad t \quad n \quad \text{reposes ton} \quad \neg \mathbf{D} \text{ st } n \text{ to } t \quad \varphi \mathbf{P}$$

t $e_i \quad \mathbf{D}_i \to \mathbf{D}$ in $\omega \text{CPOE} \not e_{\nabla} \mathbf{n}$ ropost on $-\mathbf{n} \mathbf{D}$ st nt $\mathcal{H}^{\mathfrak{F}}$ point $\mathbf{e}_i \mathbf{t}$ and tor $()_{\perp} \circ (\to) \circ \Delta \not e_{\nabla} \mathbf{n}$ ropost on $-\Box$

2.6 Logical presentation of D

n ton $\overline{}_{v}$ n str tprs nt ton \mathcal{O}_{v} us $n \neq t$ t for \mathcal{O}_{w} pos t $n \neq s^{-}$ nt ss ton, pro_{V} on rt prs nt ton \mathcal{O}_{v} s rto C s *information systems* Fo o $n \neq A \equiv A$ Ys *domain theory in logical form* us t prof $\mathcal{O}_{e} \oplus \mathcal{O}_{e}$ s n trn t_V pr s nt ton $\mathcal{O}_{v} \mathbb{D}^{-}$ n p rt u r, s o t tt ω po \mathcal{O}_{v} *lters* $\mathcal{O}_{v} \oplus s$ qu_V nt to \mathbb{D}^{-}

DEF
$$-\Psi \subseteq \Phi$$
 s lter \checkmark
• $\omega \in \Psi^-$
• $\checkmark \phi \in \Psi$ n $\vdash \phi \leq \psi$ t n $\psi \in \Psi^-$

• • φ,Ψ

- $\bullet \hspace{0.2cm} \vdash \varphi \leq \psi \nleftrightarrow \llbracket \varphi \rrbracket \leq \llbracket \psi \rrbracket^{-}$
- $a s \omega$

```
-Fo o sero t fn t \text{ on } e^{-pt} = -

a = \pm t n

a = \pm = \bigvee \emptyset = \bigvee \{b \mapsto c \mid b \mapsto c \leq a\}

t r s, ns o t teor n d

apply ad = apply(\bigvee \{b \mapsto c \mid b \mapsto c \leq a\})d

n so a = \bigvee \{b \mapsto c \mid b \mapsto c \leq a\}^{-1}

e^{-e} a \mapsto b \leq \bigvee Ce^{-e} n \omega \quad n C \subseteq \mathbf{D}, t n

b = apply(a \mapsto b)a \leq apply(\bigvee C)a = \bigvee \{apply ca \mid c \in C\}

n b s \omega o p tt r s c \in C su t t b \leq apply ca \mid c \in C\}

n b s \omega o p tt r s c \in C su t t b \leq apply ca \mid c \in C\}

n b = apply(a \mapsto b)a \leq apply(a \mid c \in D, t n)

a \mapsto b \leq \bigvee Ae^{-e} fn t s t A \subseteq \mathbf{D}, t n

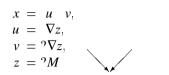
b = apply(a \mapsto b)a \leq apply(\bigvee A)a = \bigvee \{apply ca \mid c \in A\}

n b = apply(a \mapsto b)a \leq apply(\lor A)a = \bigvee \{apply ca \mid c \in A\}

n b = apply(a \mapsto b)a \leq apply(\lor A)a = \bigvee \{apply ca \mid c \in A\}
```

:	$\Rightarrow vx \cdot \Gamma \vdash \lambda x \cdot M \psi_i \rightarrow \chi_i$	$\longrightarrow I$
-	$\Rightarrow \Gamma \vdash \lambda x \cdot M \psi_i \rightarrow \chi_i$	\leq
us (∧I) n (\leq), $\Gamma \vdash \lambda x . M \phi^-$	
~ ~ 4 ~ 4 ~ 4 ~ 4	and them an annex the same	•

s st to st rt not ton n proort ort prsnttons ort os, n nstrtto nt s t t op rton prsntton⁻ o sn t, so t tt not ton s nt sr sp tst op rton s nt s o o n BAPE DPEG s Inton $\alpha \lambda$ theory


$(M \sqsubseteq_D N \Rightarrow M \sqsubseteq_S N)$ For $n \ \Gamma \ n \ \phi, \checkmark M \sqsubseteq_D N t \ n$	
$\Gamma \vdash M \hspace{0.1cm} \varphi$	
$egin{array}{l} \Rightarrow \llbracket \phi rbracket \leq \llbracket M rbracket \llbracket \Gamma rbracket rbracket \ \Rightarrow \llbracket \phi rbracket \leq \llbracket N rbracket \llbracket \Gamma rbracket rbracket rbracket$	ropn H pot s s
$\Rightarrow \Gamma \vdash M \phi$	ropn
us $\checkmark M \sqsubseteq_D N$ t n $M \sqsubseteq_S N^-$	
$(M \sqsubseteq_S N \Rightarrow M \sqsubseteq_D N)$ For $n \sigma_s \checkmark M \sqsubseteq_S N t n$	
[[<i>M</i>]]σ	

 $= \bigwedge \{ \llbracket \phi \rrbracket \mid \llbracket$

• $\operatorname{rec} D$ in M s recursive declaration $\cong D$ n M^-

 $EXA E^{-}$ • x = M,

pp tonorM to ts r, t s rn, s n r n

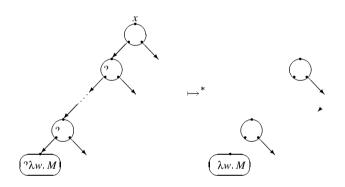
√[§] p

 $\begin{array}{ccc}
x \\
(vv) \\
(v$

DEF
$$\neg \mapsto s \underset{V}{\Rightarrow}_{V} n$$
 $\checkmark \circ s$
(BUILD) $x = (\operatorname{rec} D \operatorname{in} M) \mapsto \operatorname{local} D \operatorname{in} (x = M)$
($\nabla \operatorname{TRAV}$) $x = \nabla y, y = ^{2}M \mapsto x = \nabla y, y = M$
(TRAV) $x = y \ z, y = ^{2}M \mapsto x = y \ z, y = M$
($\vee \operatorname{TRAV}$) $x = y \lor z, y = ^{2}M \mapsto x = y \lor z, y = M$
($\vee \operatorname{TRAV}$) $x = y \lor z, y = ^{2}M \mapsto x = y \lor z, y = M$
($\vee \operatorname{TRAV}$) $x = y \lor z, y = ^{2}M \mapsto x = ^{2}M \lor M, y = ^{2}M \lor M$
($\vee \operatorname{UPD}$) $x = y \ z, y = ^{2}M \mapsto x = M[z/w], y = ^{2}M \lor M$
($\vee \operatorname{UPD}$) $x = y \lor z, y = ^{2}M \mapsto x = 1, y = ^{2}M \lor M$
($\vee \operatorname{UPD}$) $x = y \lor z, y = ^{2}M \lor M \mapsto x = 1, y = ^{2}M \lor M$
($\vee \operatorname{UPD}$) $x = y \lor z, y = ^{2}M \lor M \mapsto x = 1, y = ^{2}M \lor M$

n strutur rus

(L)
$$\frac{D \mapsto E}{D, F \mapsto E, F}$$
 (R) $\frac{D \mapsto E}{F, D \mapsto F, E}$ (V) $\frac{D \mapsto E}{\nabla x \cdot D \mapsto \nabla x \cdot E}$


ot t t
$$\checkmark D \mapsto E$$
 t n rv $D \supseteq$ rv E n wv $D =$ wv E^-

•
$$D \to E \nleftrightarrow D \equiv \mapsto \equiv E^-$$

• $D \to E \bigstar D \equiv E, \quad n \quad D \to n^+ \quad E \nleftrightarrow D \to \to n \quad E^-$
• $D \to^* E \nleftrightarrow \exists n \cdot D \to n \quad E^-$
• $D \to^{\leq i} E \nleftrightarrow \exists n \leq i \cdot D \to n \quad E^-$

EXA E

otttsn ron<mark>ziv</mark>uton, v

spss spntrvrs ustr ortn spnorun typ nrton, ppton, nrornos, typ Tor (5 p

Ho $_{V}$ r, t \checkmark^{5} o \checkmark o $_{*}$ r \Rightarrow o $_{*}$ ton $_{V}$ o $_{V}$ s \Rightarrow r p s \diamond r tr r s \checkmark , n so s u r \Rightarrow r \Rightarrow r \Rightarrow r nu r t, n so ss s op \checkmark or on urr n = n p nrn∉rps x

$$\operatorname{set} X f g \sigma x = \begin{cases} f(g \sigma) x \bullet x \in X \\ \sigma x & \text{ot r s} \end{cases}$$
$$\operatorname{fix} f = \bigvee \{ f^n \bot \mid n \text{ in } \omega \}$$
$$\bullet M \sqsubseteq_D N \bullet \llbracket M \rrbracket \leq \llbracket N \rrbracket^-$$
$$\bullet D \sqsubseteq_D E \bullet \text{wv} D = \text{wv} E \quad n \quad \llbracket D \rrbracket \leq \llbracket E \rrbracket^-$$
$$\Box$$
EXA, E = n s o t tt s nt sort ogr tr s T, s n
$$\llbracket \operatorname{rec} x = \lambda y \cdot \nabla x \text{ in } \nabla x \rrbracket$$
$$\llbracket \operatorname{rec} x = \lambda y \cdot \nabla x \text{ in } \nabla x \rrbracket$$

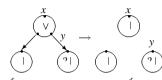
√ysts[¶]sψt n $w = \lambda v. w. x = \lambda v. w. z = x v. D$ $\rightarrow w = \lambda y \cdot w, x = \lambda y \cdot w, z = \nabla w, D$ $\rightarrow w = \lambda y \cdot w, x = \lambda y \cdot w, z = \lambda y \cdot w, D$ nutonsts^{f1}sz γ^{-} us $(w = \lambda y. w, x = \lambda y. w) \phi$ Front stss p to so t $t(w = \lambda y.w) (w \phi)^{-}$ s [¶]nton pnsont notonor grp √tnson, st prorr $D \sqsubset E^-$ DEF $-D \sqsubset E \nleftrightarrow$ $n \stackrel{1}{\nleftrightarrow} \vec{x}, \vec{y}, D' n E' su t t$ $D \equiv \mathbf{v}\vec{x} \cdot D' \qquad E \equiv \mathbf{v}\vec{x}\vec{y} \cdot (D', E') \qquad \text{fv} D \cap \vec{y} = \emptyset$ ot t t \sqsubseteq s pr or r, n t t $D \sqsubseteq E \sqsubseteq D \nleftrightarrow D \equiv E^-$ nt n $\stackrel{n}{\neq}$ nt t op r ton nt rpr t ton $\stackrel{n}{\checkmark}$ t o_{\Rightarrow} -DEF For os $r t ons \models D \Delta s \Rightarrow_v n t < 0 s$ (ε I) $\models D \varepsilon$ (ω I) $\models D (x \omega)$ n stru tur ru s

 $\begin{array}{c} \text{nt} \quad \text{rs} \quad \text{no} \quad \text{rs} \quad \text{rs} \quad \text{no} \quad \text{rs} \quad$

on $\checkmark^{\mathfrak{A}} \mathbf{u} \mathbf{t} \mathbf{s} \mathbf{s} \mathbf{n} \mathbf{\phi} = \mathbf{\psi} \rightarrow \mathbf{\chi}$

= n n ()

$$\partial \llbracket D, E \rrbracket = (X \cup X', Y \cup Y', Z \cup Z', f \cup f')$$


$$\partial \llbracket vx. D \rrbracket = (X \setminus \{x\}, Y \cup \{x\}, Z, f)$$

$$r \ \partial \llbracket D \rrbracket = (X, Y, Z, f), \ \partial \llbracket E \rrbracket = (X', Y', Z', f') \quad n \ X, Y, X' \quad n \ Y' \quad r \qquad s$$

$$n \qquad n \ s \ o \ t \ t \ s \ s \qquad nt \ s \ s \checkmark u \qquad str \ t \checkmark or \equiv \neg$$

For \checkmark p, otruton

ut not

otttntr (sostorpt)

 $(x = y \lor z, y = \lambda w.M) \mapsto (x = 1, y = \lambda w.M)$ s n $(x = y \lor z, y = \lambda w.M) \mapsto (x = 1, y = \lambda w.M)$ s n $(x = y \lor z, y = z, n x \neq z \neq y^{-}$ DEF $(x = y \lor z, y = z, n x \neq z \neq y^{-}$ $(x = y \lor z, y = z, n x \neq z \neq y^{-}$ $(x = y \lor z, y = z, n x \neq z \neq y^{-}$ $(x = y \lor z, y = z, n x \neq z \neq y^{-}$ $(x = y \lor z, y = z, n x \neq z \neq y^{-}$ $(x = y \lor z, y = z, n x \neq z \neq y^{-}$ $(x = y \lor z, y = z, n x \neq z \neq y^{-}$

$$\begin{array}{lll} (\forall \text{TRAV}) & x = y \forall z, y = {}^{9}M \mapsto_{c} x = y \forall z, y = M \\ (\nabla \text{UPD}) & x = \nabla y, y = \lambda w. M \mapsto_{c} x = \lambda w. M, y = \lambda w. M \\ (\text{UPD}) & x = y \ z, y = \lambda w. M \mapsto_{c} x = M[z/w], y = \lambda w. M \\ (\forall \text{UPD}a) & x = y \forall z, y = \lambda w. M, z = N \mapsto_{c} x = 1, y = \lambda w. M, z = N \\ (\forall \text{UPD}b) & x = y \forall y, y = \lambda w. M \mapsto_{c} x = 1, y = \lambda w. M \\ (\forall \text{UPD}c) & x = y \forall x, y = \lambda w. M \mapsto_{c} x = 1, y = \lambda w. M \end{array}$$

(L)
$$\frac{D \mapsto_{c} E}{D, \mathbf{k} \mapsto_{c} E, F}$$
 (R) D

For closed D ¬ ≤¬ is a partial order_ ¬D ≤¬≡ E iff D ≡ ≤¬ E_ ¬If D →¬→ c E then D → c →¬ E_ ¬If D ≤¬→ c E then D → $c ≤ ¬ E_$ ¬If D ≤¬→ γ E then D → $\gamma ≤ ¬ E_$ ¬If D → E then D → $c → \gamma ≤ ¬ E_$ ¬If D → E then D → $c → \gamma ≤ ¬ E_$ ¬If D → E then D → $c → \gamma ≤ ¬ E_$

 $\begin{array}{cccc} -\mathbf{B} & \stackrel{\text{off}}{\Rightarrow} \mathbf{n} \text{ ton,} \leq_{2} \text{ sr} & \stackrel{\text{off}}{\Rightarrow} e^{-\mathbf{B}} & \text{n uton on t process} D \leq_{2} E, & \text{n} \\ \text{so t to } D \leq_{2} E \leq_{2} D \text{ t n} D = & \end{array}$

$\rightarrow_c \mathbf{v} \vec{x} \vec{y} . (F', z = M, G)$	\lor TRAV			
$\rightarrow_c \mathbf{v} \vec{x} \vec{y} . (F', z = M, H)$	VUPDa			
$\equiv \mathbf{v} \mathbf{\vec{x}} . (\mathbf{v} \mathbf{\vec{y}} . (\mathbf{F}', z = \mathbf{M}), \mathbf{H})$	$\nu_{ m MIG}$			
$\leq_2 vec{x}$. $(vec{y}$. $(F', z = {}^2M), H)$	$D \bullet n \bullet \leq_2$			
$\equiv v \vec{x} . (F, H)$	Eqn			
$\equiv E$	Eqn			
us, $D \rightarrow_c^* \rightarrow_\gamma^* \leq_{?} E^-$				
$ \begin{array}{c} \text{us,} D \to_c^* \to_\gamma^* \leq_\gamma E^- \\ \text{(others)} \text{ot } \mathbf{r} \not \stackrel{\S}{\bullet} \mathbf{o} \mathbf{s} \mathbf{r} \stackrel{\$}{\bullet} \mathbf{s} \mathbf{o} \mathbf{s} \mathbf{c} \mapsto_{c_s} \mathbf{n} \mathbf{so} \ D \to_c^* \to_\gamma^* \leq_\gamma E^- \end{array} $				
$-$ t $D \rightarrow^n E$, n pro n u t on on n				
(

$-If D \equiv (D', x = \lambda w.M) \rightarrow_c E \text{ then } E' \equiv (E', x = \lambda w.M)_{-}$		
$ \mathcal{F} If D \equiv (D', x = {}^{\circ}M) \xrightarrow{\sim}_{c} E \text{ then } E \equiv (D', x = M) $ or $E \equiv (E', x = {}^{\circ} \mathcal{F}) $	- 2	٦

```
roposton 👢 – t r
     n
   ٠
              ۷
                                    H \equiv (G, |\text{ocal } K \text{ in } x = M)
       n
                     s
                            Ε
                                \equiv \mathbf{v} \vec{x} . (G, J)
                                                                                            Eqn 🖌
                                \equiv \nu \vec{x} \cdot (G, |oca| K | n x = M)
                                                                                            Eqn
                                \equiv v \vec{x} \cdot H
                                                                                            Eqn
                                \equiv F
                                                                                            Eqn
```

• or v

 $H \equiv (L, x = \operatorname{rec} K \operatorname{in} M)$

5

n **∢**or n N

(G, x)

rutonsn norrto_vut x

 $-If D \vdash x \prec y$ then $D, E \vdash x \prec y_{-}$ $-If \forall x . D \vdash y \prec z then D \vdash y \prec z_{-}$ If $x \neq y \neq z$ w is fresh and $D \vdash x \prec z$ then $[w/y]D[w/y] \vdash x \prec z_{-}$ \mathbf{F}^- nutons on t proce $\mathbf{e} \prec^-$ nso t t $D \rightarrow_x E \nleftrightarrow t$ r s r utonont x spn $\Leftrightarrow D$ n $\int -D \rightarrow_x E \ iff D \equiv v\vec{x} \cdot F \ E \equiv v\vec{x} \cdot G \ F \rightarrow_y G \ is \ an \ axiom \ and$ 7 $F \vdash x \prec y_{-}$ \Rightarrow An n u ton on t proce $\cong D \rightarrow_x E^ \Leftarrow$ An nutonont proce or $F \vdash x \prec y^-$ If $D \vdash x \prec y$ and $D \rightarrow_y E$ then $D \rightarrow_x E_-$ * $F^{-B} = ropost on \int D \equiv v\vec{x} \cdot F, E \equiv v\vec{x} \cdot G, F \vdash y \prec z \quad n \quad F \to_z G \quad s \quad n$ n so

 $D \\ \equiv \mathbf{v} \vec{x} . (F, G) \\ \equiv \mathbf{v} \vec{x} . (F)$

Eqn

$\equiv \mathbf{v} y \vec{w} . (G', H) \qquad (\mathbf{v} \text{MIG}) \mathbf{n} (\mathbf{v} \text{SWAP})$	n snssœr d [§] o ou _{¢tv} H→ _c I, ⁴ Intt tr
$ \begin{array}{ccc} \nu \vec{w} \cdot (G', H) & & \text{Eqn} \\ \overrightarrow{}_c \nu \vec{w} \cdot (G', I) & & \text{Eqn} \\ \overrightarrow{} E' & & \text{Eqn} \end{array} $	$\circ G, H \to_x G, I n \text{so } D \to_x E^-$ $\circ \text{For } n N, H', x = N \to I', x = N,$ $n \text{so } D', x = N \to E', x = N^-$
• OF	⁻ B ropos t on
• or \mathbf{v} $I \equiv \mathbf{v} \mathbf{y} . I' \qquad E' \equiv \mathbf{v} \vec{w} . (G, I')$	$D \equiv \mathbf{v}\vec{x} \cdot F \qquad E \equiv \mathbf{v}\vec{x} \cdot G \qquad F \vdash \mathbf{y} \prec \mathbf{z} \qquad F \rightarrow_{\mathbf{z}} G \mathbf{s} \mathbf{n} \mathbf{v} \stackrel{s}{\to} \mathbf{o}$
so nssor \checkmark to t to $rac{1}{2}$ ot to $rac{1}{2}$ $H \mapsto_{c} I$, $?$ in t t to I	n n α on ∇ rt sot $t x \notin x$ n roposton t r
poss t s (BUILD) n s	• v
$D \equiv v \vec{w} . (G, z = \operatorname{rec} F \operatorname{in} M)$	$\vec{x} = \vec{y}w\vec{z}$ $D' \equiv v\vec{y}\vec{z} \cdot [x/w]F[x/w]$
$E \equiv v \vec{w} \cdot (G, oca F \text{ in } z = M)$	
$E' \equiv v \vec{w} \cdot (G, I')$	
vy. $I' \equiv oca F in z = M$	$\equiv v\vec{x} \cdot G \qquad \qquad \text{Eqn}$
-B ropost on -	$\equiv v \vec{y} w \vec{z} \cdot G \qquad \qquad$
$D \equiv \mathbf{v} \vec{\mathbf{y}} \cdot (G, H) \qquad E \equiv \mathbf{v} \vec{\mathbf{y}} \cdot (G, I) \qquad H \mapsto_c I \text{ s n } 4^{\frac{c}{2}} \mathbf{o}$	$= \sum \left[\frac{\chi}{M} \right] \left[\frac{\chi}{M} \left[\frac{\chi}{M} \right] \left[\frac{\chi}{M} \right] \left[\frac{\chi}{M} \left[\frac{\chi}{M} \right] \left[$
n ropostons $-$ n $-$ v	
$D' \equiv v \vec{y} \cdot D''$	$ x/w F x/w \rightarrow_z x/w G x/w $
$(D'' \mathbf{r} - M) = (G H)$	ropos t on
$E' \equiv v \vec{y} \cdot E''$	$[x/w]F[_{wx}$
$E = vy \cdot E$ $(E'', x = M) \equiv (G, I)$	
n ropos t ons – n – t r	
• V	
$G \equiv (G', x = M)$ $D'' \equiv (G', H)$ $E'' \equiv (G', I)$	
73	

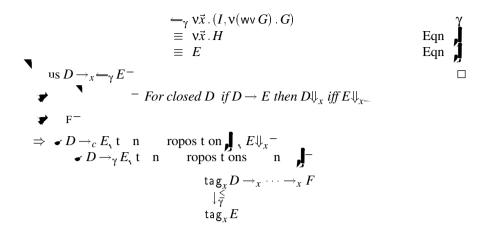
so•or n N

$$D', x = N$$

$$\equiv (v\vec{y} \cdot D''), x = N$$

$$\equiv (v\vec{y} \cdot (G', H)), x = N$$

$$\mapsto_{c} (v\vec{y} \cdot (G', I)), x = N$$


$$\equiv (v\vec{y} \cdot E''), x = N$$

$$\equiv E', x = N$$
Eqn

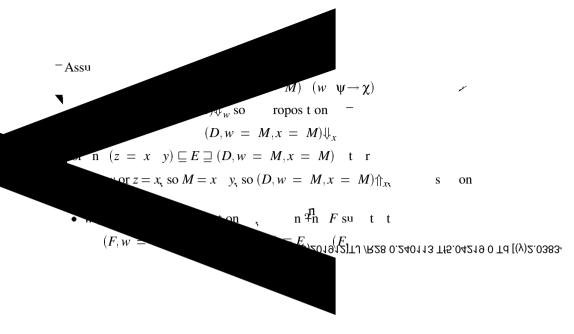
$$H \equiv (H', x = M) \quad D'' \equiv (G, H') \quad I \equiv (I', x = M) \quad E'' \equiv (G, I')$$

• $D \equiv D$

so
$$(\nabla IND), D \rightarrow_x E, n \text{ so } D \rightarrow_x \rightarrow_c F^-$$

• $D \rightarrow_x E, n \text{ so } D \rightarrow_x \rightarrow_c F^-$
(IND) s s r⁻
(VIND) s s r⁻
 $\neg F^- \text{ to } c \text{ losed } D \text{ if } x \text{ is tagged in } D \text{ and } D \rightarrow_c^* E \text{ then } D \rightarrow_x^* \rightarrow_{\neg x}^* E_-$
 $\neg F^- \text{ t } D \rightarrow_c^n E, n \text{ pro } n \text{ u t on on } n^-$
• $n = t n D \equiv E \text{ so } D \rightarrow_x^* \rightarrow_{\neg x}^* E^-$
• $n > t n D \rightarrow_c F \rightarrow_c^{n-} E, n \text{ ropos t on } P^- x \text{ st } \Rightarrow n F$
so $n \text{ u t on } F \rightarrow_x^* \rightarrow_{\neg x}^* E, \text{ so } \text{ ropos t on } D \rightarrow_x^* \rightarrow_{\neg x}^* E, n \text{ so } D \rightarrow_x^* \rightarrow_{\neg x}^* E^-$
 $\neg F^- \text{ to } c \text{ losed } D \text{ if } x \text{ is tagged in } D$

- t r s $F_i = (x_i = M_i)$, n $w_i = \varepsilon^$ n
 - For i su t t $D[\vec{x}/\vec{z}] \vdash x \sim x_{i_1} (x_i = M_i[\vec{x}/\vec{z}]) \rightarrow_c \nu \vec{w}_i \cdot F_i[\vec{x}/\vec{z}]$ n so $E \rightarrow_c^* F[\vec{x}/\vec{z}]^-$
 - $\mathbf{r} , D[\vec{y}/\vec{z}] \rightarrow_c^* F[\vec{y}/\vec{z}]^-$


7

• $t\mathcal{R}$ v $ss D[\vec{x}/\vec{z}]$ s u ton su t $t\vec{x}\mathcal{R}\vec{y}^-$ n $t\mathcal{R}'$ t s str ton ont $n \underset{\overrightarrow{\sigma}}{\ast} \mathcal{R}$ su t $t\vec{w}\vec{w}\vec{w}_i\vec{w}_i \mathcal{R}$ $\vec{w}\vec{w}_j\vec{w}_j\vec{w}^-$ n s o \mathcal{R}' s v $ss (G, x = M, F, ..., F_n)[\vec{x}/\vec{z}]$ s u ton, n so $F[\vec{x}/\vec{z}] \vdash \vec{x} \sim \vec{y}^-$

 (νMIG) n $v\vec{x} \cdot (D, |oca| G | n x = M', |oca| H | n y = N')$ $\equiv \mathbf{v} \mathbf{\vec{x}} \cdot \mathbf{v}(\mathbf{w} \mathbf{v} \mathbf{G}) \cdot \mathbf{v}(\mathbf{w} \mathbf{v} \mathbf{H}) \cdot (\mathbf{D}, \mathbf{G}, \mathbf{H}, \mathbf{x} = \mathbf{M}', \mathbf{y} = \mathbf{N}')$ $f_{n \text{ ton}}^{\Pi}$ n **∢**ro t $\nabla \vec{x} \cdot \nabla (\nabla \nabla G) \cdot \nabla (\nabla \nabla H) \cdot (D, G, H, x = M', y = N') \vdash x \sim y$ nuton SO $\nabla \vec{x} \cdot \nabla (\nabla \nabla G) \cdot \nabla (\nabla \nabla H) \cdot (D, G, H, x = \nabla \nabla \nabla \nabla \nabla G = N') \Downarrow_{\tau}$ n so $\nabla \vec{x} \cdot (D, x = \nabla y, y = N)$ $\equiv v\vec{x} \cdot (D, x = \nabla y, y = \operatorname{rec} H \operatorname{in} N')$ Eqn 🖌 $\rightarrow \mathbf{v} \mathbf{x}$ $(D, \mathbf{x} = \nabla \mathbf{v}, |\text{ocal} H \text{ in } \mathbf{v} = N')$ B D $- v\vec{x} \cdot (D, |\mathsf{oca}| G \mathsf{in} \varepsilon, x = \nabla y, |\mathsf{oca}| H \mathsf{in} y = N')$ γ $\equiv \mathbf{v} \mathbf{\vec{x}} \cdot \mathbf{v}(\mathbf{w} \mathbf{v} \mathbf{G}) \cdot \mathbf{v}(\mathbf{w} \mathbf{v} \mathbf{H}) \cdot (\mathbf{D}, \mathbf{G}, \mathbf{H}, \mathbf{x} = \nabla \mathbf{y}, \mathbf{y} = \mathbf{N}')$ νMIG n so Equiton n ropositon $\nabla \vec{x} \cdot (D, x = \nabla y, y = N) \Downarrow_{\tau}$ otrssrs r⁻ ⇐ syswvi0 238.2.240113 12(m)-8302154(i)-5.01912(l)-5f 0 3 23364 11 -1 0 3.1126!

```
= \operatorname{read} x \circ f
                                                                                                                 f = g \circ f
        • x \notin X t n
                          \operatorname{\mathsf{read}} x \circ (\operatorname{\mathsf{set}} Xg)^{n+} \perp \circ f
                               = \operatorname{read} x \circ (\operatorname{set} Xg)((\operatorname{set} Xg)^n \bot) \circ f
                                                                                                              D \bullet n \bullet f^n
                               = read x \circ f
                                                                                                                ropn 구
      us (set Xg)^{n+} \perp \circ f < f^-
us
                   f = g \circ f
                         \Rightarrow \bigvee \{(\operatorname{set} Xg)^n \perp \circ f \mid n \text{ in } \omega\} \leq f
                                                                                                                      A ov
                         \Rightarrow \bigvee \{ (\operatorname{set} Xg)^n \bot \mid n \text{ in } \omega \} \circ f \leq f
                                                                                                       \circ s ont nuous
                         \Rightarrow fix(set Xg) \circ f < f
                                                                                                               D √n œ fix
  For \checkmark^{\varsigma} p , \checkmark wv f = X, wv g = Y n X \cap Y = \emptyset t n
                                                                                                                    prt,
                                                                                                          ¥
                        fix(set(X \cup Y)(f \circ g)) = f \circ fix(set(X \cup Y)(f \circ g))
    n so t o<sub>v</sub>
                fix(set Xf) \circ fix(set(X \cup Y)(f \circ g)) \le fix(set(X \cup Y)(f \circ g))
             r
                fix(set Yg) \circ fix(set(X \cup Y)(f \circ g)) \le fix(set(X \cup Y)(f \circ g))
us
          set(X \cup Y)(fix(set X f) \circ fix(set Y g))(fix(set(X \cup Y)(f \circ g)))
                = fix(set X f) \circ fix(set Y g) \circ fix(set(X \cup Y)(f \circ g))
                                                                                                                 ropn –
                \leq \operatorname{fix}(\operatorname{set} Xf) \circ \operatorname{fix}(\operatorname{set}(X \cup Y)(f \circ g))
                                                                                                                     Eqn
                \leq \operatorname{fix}(\operatorname{set}(X \cup Y)(f \circ g))
                                                                                                                    Eqn
```

✓ $x \in wv D t$ n [(rec D in M $= \llbracket D \rrbracket$

F⁻ -An n u t on on φ⁻ on \mathscr{A}^{Π} u t s s n φ = ψ→ χ⁻ ⇒ $\mathscr{A} \models D$ (x ψ→ χ) t n D \Downarrow_x so ropos t on vw. D \Downarrow_x ⁻For n (z = x y) $\sqsubseteq E \sqsupseteq (vw. D)$, tv \mathscr{A} r s, ropos t on , n $\stackrel{\Pi}{=}$ n $F \sqsupseteq (z = x y)$ su t t $E \equiv vv. F$ $F \sqsupseteq [v/w]D[v/w]$ so ropos t on

 $\models [v/w]D[v/w] \quad (x \quad \psi \rightarrow \chi)$

n so

$$\models E \quad (y \quad \psi) \\ \Rightarrow \mid = vv \cdot F \quad (y \quad \psi)$$

• •
$$w = xt$$
 n n⁴h • rs \tilde{y} n I su t t

$$H \equiv v \tilde{x} \tilde{y} . (F, G, I, w = M, z = w y) \qquad \checkmark$$
so $t \tilde{w} = wv G$, n tv n \tilde{v} • rs $-$ ns n $\models D (x \psi \rightarrow \chi)$,
ropost on
 $v \tilde{x} . (F, v = rec G in M)[v/w] (v \psi \rightarrow \chi)$
n, • ro t ⁴h ton • \Box
 $(z = v y)$
 $\subseteq v \tilde{x} . (F[v/w], G, I, v = (rec G in M)[v/w],$
 $w = M[v/w], z = v y)$
 $\exists v \tilde{x} . (F, v = rec G in M)[v/w]$
n
 $\models H (y \psi)$
 $\Rightarrow \models v \tilde{x} \tilde{y} . (F, G, I, w = M, z = w y) (y \psi)$ Eqn \sim
 $\Rightarrow \models (F, G, I, [v \tilde{v}/w \tilde{w}]G[v \tilde{v}/w \tilde{w}],$
 $v = M.w = M, z = w y) (y \psi)$ ropn \sim
 $\Rightarrow \models (F, G, I, [v \tilde{v}/w \tilde{w}]G[v \tilde{v}/w \tilde{w}],$
 $v = M[v/w], G, I, [v \tilde{v}/w \tilde{w}]G[v \tilde{v}/w \tilde{w}],$
 $v = M[v/w], z = v y) (y \psi)$ ropn \sim $-$
 $\Rightarrow \models (F[v/w], G, I, [v v (rec G in M)[v/w],$
 $w = M[v/w], z = v y) (y \psi)$ n n
 $\Rightarrow \models (F[v/w], G, I, v = (rec G in M)[v/w],$
 $w = M[v/w], z = v y) (z \chi)$ Eqns n
 $\Rightarrow \models H (z \chi)$ r
 $us \models E (x \psi \rightarrow \chi)^{-}$
• • $x \neq w \neq zt$ nt process r⁻
(OTHER) • $D \rightarrow_c E$ sprov tout B D t n ns ot tt
 $D \subseteq D'$ p $s D' \rightarrow_c E' \supseteq E$
 $E \subseteq E'$ p $s D \subseteq D' \rightarrow_c E'$
 $n \bullet \models D (x \psi \rightarrow \chi) t n D \downarrow_x$ so roposton $\int_{v}^{1} E \Downarrow_x^{-}$ neor
 $n (z = x y) \sqsubseteq F \supseteq E$, $n \Rightarrow h G$ Su t t
 $F \equiv (G, z = x y)$
n tw • rs so
 $(w = x y) \subseteq (G, w = x y, z = x y) \supseteq E$

5

 $n \stackrel{n}{\neq} n H \sqsupseteq D su t t$ n $H \rightarrow_c F$ n $= F (y \Psi)$ $\Rightarrow \models (G, z = x \ y) \ (y \ \psi)$ Eqn $\Rightarrow \models (G, z = x \quad y, w = x \quad y) \quad (y \quad \Psi)$ ropn 🗸 $\Rightarrow = (H, w = x \ y) \ (y \ \psi)$ n n $\Rightarrow = (H, w = x \ y) \ (w \ \chi)$ $= D (x \psi \rightarrow \chi)$ $\Rightarrow \models (G, z = x \quad y, w = x \quad y) \quad (w \quad \chi)$ n n $\Rightarrow \models (G, z = x \quad y, w = x \quad y) \quad (z \quad \chi)$ ropn 🖌 🗕 $\Rightarrow \models (G, z = x \ y) \ (z \ \chi)$ ropn 🗸 $\Rightarrow \models F (z \gamma)$ Eqn use or n $(z = x \ y) \sqsubseteq F \sqsupseteq E$ $\models F (y \ \psi) \Rightarrow \models F (z \ \chi)$ $|\mathbf{s}\mathbf{q}| = E \ (x \ \mathbf{\psi} \rightarrow \mathbf{\chi})^{-}$ ot r r ton ssons r -

3.11 Full abstraction

nt sston, so t tt o **D** sou str toor on urr nt srp r u ton s nst t on urr nt srp r u ton st s ou str t o sot ostoutrostr u ton, n so on urr nt srp r u ton so t s o put ton por sot ostoutrostr u ton sproco o st s strutur s ton -

- so t t $\Gamma \vdash D \Delta \nleftrightarrow [\![\Delta]\!] \leq [\![D]\!] [\![\Gamma]\!]$, t us so $\mathfrak{q} \not \to \mathfrak{t}$ tt process st ssoun n o p t ort not ton s nt s s roposton $\sim \sim$, t \mathfrak{s} p r u ton qu \mathfrak{q} nto roposton -
- t nso $t \leftarrow \Gamma \vdash D$ Δt n $\Gamma \models D$ Δ , n t $t \leftarrow \Gamma \models D$ Δt n $\llbracket \Delta \rrbracket \leq \llbracket D \rrbracket \llbracket \Gamma \rrbracket^-$ ust tr prsnttonsort $o \Rightarrow$ r qu_v nt s s roposton \checkmark , t \Rightarrow r p r uton qu_v nt roposton –
- Fn, so t teru str ton sæn provnæt tr oæ prsnttonsto qu_v nt ss roposton, tærp r uton qu_v ntær roposton –

`us,ABp→A, Yn Gstnqusn ptto_erpruton[−]

 $\mathbf{\tilde{v}}$

 $\begin{array}{c} \bullet \\ & & \\ & -\Gamma \vdash M \quad \phi \ iff \llbracket \phi \rrbracket \leq \llbracket M \rrbracket \llbracket \Gamma \rrbracket _ \\ & -\Gamma \vdash D \quad \Delta \ iff \llbracket \Delta \rrbracket \leq \llbracket D \rrbracket \llbracket \Gamma \rrbracket _$

t n $\begin{bmatrix} x & \phi \end{bmatrix}$ H pot s s $\leq (x = \llbracket M \rrbracket) \llbracket \Delta \rrbracket$ $\leq (x = \llbracket M \rrbracket)(\llbracket x = M \rrbracket)\llbracket \Gamma \rrbracket)$ H pot s s $= [x = M] [\Gamma]$ ropn – ٦ otrssrs r⁻ C E E E \Leftarrow An nuton on M n D-For \checkmark p, $\checkmark x \neq y$ n $\llbracket \phi \rrbracket \leq \llbracket x \quad y \rrbracket \llbracket \Gamma \rrbracket$ t n t r $\llbracket \phi \rrbracket = \bot$, so $\vdash \phi = \omega$ n so $\Gamma \vdash x \neq \phi$, or $\llbracket \phi \rrbracket \leq \llbracket x \quad y \rrbracket \llbracket \Gamma \rrbracket$ $\Rightarrow \llbracket \phi \rrbracket \le \operatorname{apply} \llbracket \Gamma(x) \rrbracket \llbracket \Gamma(y) \rrbracket$ $D \bullet n \bullet [x y]$ $\Rightarrow \llbracket \Gamma(y) \to \phi \rrbracket \leq \llbracket \Gamma(x) \rrbracket$ ropn - $\Rightarrow \vdash \Gamma(x) \leq \Gamma(y) \rightarrow \phi$ ropn $\Rightarrow \vdash \Gamma \leq x \quad \Gamma(y) \rightarrow \phi, y \quad \Gamma(y)$ D∢nov≤ $\Rightarrow \Gamma \vdash x \quad y \quad \phi$ (≤)**∢**[§]

 $(z = x \quad y) \sqsubseteq E \sqsupseteq (D, x = \lambda w. M)$

- $\bullet \models D \quad (x \quad \phi \rightarrow \psi) \text{ t } n D \Downarrow_x \text{ so } \text{ Coro } r \succ \llbracket D \rrbracket \sigma x \neq \bot^- A \text{ so, } \bullet \text{ or } \bullet r \text{ s } y \quad n \quad z \text{ true}$
 - \Rightarrow

4 Conclusions

nt sppr, v nv stætt r tons pt nt s nt noton æ full abstraction nt p nt tont nqu æ concurrent graph reductionv sont t

- Con urr nt r p r u ton n r n s p op r ton pr s nt ton nt st r BEFFY n B D s *chemical abstract machine*, n EF s *polyadic* π *calculus*
- t n qu s \mathbf{G} AB \mathbf{F} A Y n G s *lazy* λ *calculus* n

urs v rtons o v r sor s AD H so nv statst rtons p t narp ruton n t D_{∞} o ort unt p λ uus s BAFE DEG, vor or t s, top s t rp up E H nABA Y n G – BAFA DEG et al_ r s ratio or or on term graph rewriting, ntro u BAFA DEG et al_ , n surv E A AY et al_ n t ot rp p rs n EE et al_s EE et al_ oo - r r rp s r v r s rto rtons, ut rroot , n o ss B $- \times A$ = * H HAAADEAA ADEAA ADEAA ADEAA ADEAA ADEAA ADEAA ADEAA ADEAAS AZY nt sœrprutons → H HAA n EAAs AZY CF HA→, ↓ t n s s CF t |et rtons ss → v n → st poprton s nt sœrt or nours nt √

 $(|\mathsf{et} D \mathsf{in} M) \Downarrow (|\mathsf{et} E \mathsf{in} N)$

ss ntsss rtooursn A CHB 🖝 Ys, ♦ ptt t

- AZY CF HAP's tp ngu , n sonstrutors n onstrutors on sn n tur nu rs⁻
- n let (pr ss ons r n = us rt rt n rec (pr ss ons t s n t s = or (f) po nts os so s r n = n= or t on

 $(\operatorname{let} D \operatorname{in} \operatorname{let} x = (\mu x \cdot M) \operatorname{in} M) \Downarrow (\operatorname{let} E \operatorname{in} N)$

Fn n_{\Rightarrow} proor t n qut t spo ru nou to so ru str ton or on urr nt r pr u ton, ut o snotr on on s n ss s to qut q^{-1} ut -

Y ED λ CAC - process n nt spprron ort untp λ u us trurs v rtons non strtounton n_{a} u s rus nprt rtp, n v tp onstrutors n on strutors usu nt or w p ttrn t n_{a} -

u onstrutors n onstrutors ou to t λ u us t r urs v r tons⁻For \checkmark p, t pro u t t p $T \times U$ t onstrutors n onstrutors

pair $T \rightarrow U \rightarrow (T \times U)$ fst $(T \times U) \rightarrow T$ snd $(T \times U) \rightarrow U$

ou tot λ uus trurs rtons s

 $M = \cdots | \text{pair } xy | \text{fst } x | \text{snd } x$

tt oprtons nt seor

E $\mathbf{E}^{+}, \mathbf{D}^{-}$ -Combinator Graph Reduction A Congruence and its Applications \mathbf{D}^{-} t s s, for $\mathbf{n}_{\mathbf{v}}$ rs t -
ACAE Categories for the orking Mathematician-Grut (sn t ts- prngrr
$\mathbf{F} = \mathbf{F} \mathbf{u}$ strts nts \mathbf{v} tp λ \mathbf{u} - Theoret_Comput_Sci $\mathbf{F} \mathbf{v} = \mathbf{F} \mathbf{v}$ - $\mathbf{F} \mathbf{v}$ - \mathbf{C} communication and Concurrency - r nt H -
$\mathbf{F}_{\mathbf{r}} = -\mathbf{p}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}}$ us twor $-\mathbf{n}$ Proc_International Summer School on
Logic and Algebra of Specication, r to r or –
🗰 🖅 uus o seeprogen ng ngug s-D ssrtton, ——
Y C F, A ⁻ -Abstract Interpretation and Optimising Transformations for Applicative Pro grams ⁻ Dt ss, E n ur , n , rst D pt ⁻ Co put r n ⁻
G, C [−] H [−] [−] The Lazy Lambda Calculus An Investigation into the Foundations of Func tional Programming [−] Dt s s, p r Co , on on n _y rs t [−]
G, C [−] H [−] = , f [−] on trns n ounton sttng [−] n <i>Proc_LICS</i> , pgs = EEE Coputro [−] rss [−]
EY E, The Implementation of Functional Programming Languages r nt H
EPCE, B ⁻ C ⁻ -Basic Category Theory for Computer Scientists ⁻ pr ss ⁻
, G [−] [−] CF ons r s pro r n = n = n = [−] Theoret_Comput_Sci,
$G^ J^-Do$ $ns^ v$ non ous tp^-
♥ H HAA, ¯n EAA,
\bullet E $-H^ \int -D^{\circ}p$ t sustitution $-$ nt snot $D \sim D$, n_v rst \circ Cop n $\circ n^-$ C $D^$ $-Do$ ns or notion s nt s $-$ n E E, $-$ n CH D , $E^ -$
C, D ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻
EE, \mathbf{T} , \mathbf{A} , \mathbf{E} , \mathbf{T} , \mathbf{n} , \mathbf{A} , \mathbf{E} , \mathbf{E} , \mathbf{C} , \mathbf{D} , \mathbf{T} , \mathbf{T} tors $\int \mathcal{T}$ and \mathcal{T} remultive Graph Rewriting Theory and Practice $-\infty$ n n ons
Y,E ⁻ -Denotational Semantics The Scott Strachey Approach to Programming Language Theory ⁻ r ss ⁻
\Rightarrow $E \Rightarrow$ $D^ \neg$ An p nt ton t n qu \Rightarrow or pp t v $n \Rightarrow s^-$ Software Practice and Experience,
→ B→ D ⁻ − rn A non str to un ton not to t
AD $\mathbf{P}_{\mathbf{H}_{\mathbf{V}}}$ $\mathbf{F}_{\mathbf{U}_{\mathbf{V}}}$ $\mathbf{P}_{\mathbf{U}_{\mathbf{V}}}$ $\mathbf{F}_{\mathbf{U}_{\mathbf{V}}}$ $\mathbf{F}_{\mathbf{U}_{\mathbf{U}_{\mathbf{V}}}}$ $\mathbf{F}_{\mathbf{U}_{\mathbf{U}_{\mathbf{V}}}}$ $\mathbf{F}_{\mathbf{U}_{\mathbf{U}_{\mathbf{U}_{\mathbf{U}}}}$ $\mathbf{F}_{\mathbf{U}_{\mathbf{U}_{\mathbf{U}_{\mathbf{U}}}}$ $\mathbf{F}_{\mathbf{U}_{\mathbf{U}_{\mathbf{U}_{\mathbf{U}}}}$ $\mathbf{F}_{\mathbf{U}_{\mathbf{U}_{\mathbf{U}_{\mathbf{U}}}}$ $\mathbf{F}_{\mathbf{U}_{\mathbf{U}_{\mathbf{U}_{\mathbf{U}_{\mathbf{U}}}}}$ $\mathbf{F}_{\mathbf{U}_$

Index of authors

```
A r s \overline{x} root A_{\overline{x}}^{-}

Aro, Z^{-}_{\overline{x}}

Ar_{v} n

Au_{u}ustsson \overline{x} h h \overline{x} h h \overline{x} 
 Brnr H^-
Brnr H^-
Brnr G^-
Bou o, G^-
Broo s, D^-_{T}
     D_{v}, B^{-}A^{-}_{\tau}
D \downarrow n C n \downarrow n, \tau \downarrow
B_{r,\tau} = \tau
D o \tau \tau
                     rs, F
         E_v ns -r, A_z^-
     Frunn, 🔩 ,
       \begin{array}{c} G \ , A^-_{\tau} \\ G \ u \ rt_{\tau} \checkmark \checkmark \checkmark \phantom{s}^-_{\tau} \\ Go \ s \ s \ n_{\tau} \sim \neg C^-_{\tau} \end{array},
     H nn ss
Ho r C A
         onson,
                       nn , 🐨 T 🔍 ,
op, - T T
                             rs n, −G,
                             ss 4 - - -
                         un ur i Tan a a
                       st r, D,
   \begin{array}{c} n, \overline{\phantom{x}} \\ ro, \overline{\phantom{x}} \\ nr, \overline{\phantom{x}} \\ orr s, \overline{\phantom{x}} H_{\overline{\phantom{x}}} \end{array}
```

$$s n, \overline{r}, \overline{r},$$

Index of definitions

```
A,
 strt rton\partial [[D]],
 фг,
apply, 🖌
ss an nt x = f,
 t "or
     ωCPOE,
     ωcpo,
E,
       È,
                                                            s
      ∙t c⊥,
      pro utCXD.
                                                            s
    n, 📕
ω
                                                        pt ,
 os rton,
 ostr,
                                                        rt,
 os n → ont 🕂
o on ,
o t
ωο
        t,
ωopt
opt tt,
o<sub>f</sub>pto,
                                                      fix, 🏓
on unt
                                                      fn, 🏸
ont ∢<sup>$</sup>t
                                                      fork, 🖌
       pp t on \Gamma(x),
       os n  C[\cdot], 
      ο vx.Γ, ×
      о,⇒ Г.
     s nt s [[Γ]],
     s nt t C[\cdot],
                                                      fv D, ,
ω ont nuous,
                                                      fv M, "
on<sub>v</sub>rantruton strta, 🗸
orr to,
D, ~
                                                      I,
D<sub>F</sub>,
Dec,
r t on,
     v ss
       str t \partial \llbracket D \rrbracket,
       on tnton D, E,
       pt \varepsilon, D \equiv E, D \equiv E,
      • pr ss _{\rm V} D_{\rm \Gamma}
      \checkmarkt ns on D \sqsubseteq E
      o \quad v\vec{x} \cdot D, \vec{J}
```

```
o \quad vx \cdot D
        r urs v local D in E.
         stnr,
        t a = 0 x = M,
unt a = 0 x = ^{9}M,
    not t on
        pr or r D \sqsubseteq_D E,
        pror r M \sqsubseteq_D N, ,
         s nt s [D],
         s nt s [[M]], ~,
              nt s [Γ],
              nt s [[o]],
        S
              nt s [[p]],
   trn oon,
  n<sub>≩</sub>
n<sub>v</sub> ron nt Σ, ≁

for proposition,
fut
tr,

Filt 🖞 🖌
•u strto,
•un tor,
     aon ∆,
        •un t on sp (\rightarrow),
         •t n∉()⊥,
 \underset{\mathbf{Z}}{\Rightarrow} \mathbf{r} \underset{\mathbf{Z}}{\Rightarrow} \mathbf{o} \quad \mathbf{t} \text{ on } D \rightarrow_{\gamma} E, \ \mathbf{z}
```

E, s u ton, s u ton, v ss, s t gor, split, ~